港湾設計業務シリーズ

波浪変形計算システム(非定常緩勾配方程式)

Ver 2. X. X

入力操作手順説明書

〒730-0833 広島市中区江波本町4-22 Tel (082)293-1231 Fax (082)292-0752 URL http://www.aec-soft.co.jp Mail:support@aec-soft.co.jp

マニュアルの表記

システム名称について

 本システムの正式名称は「波浪変形計算システム(非定常緩勾配方程式) Ver2.x.x」 といいますが、本書内では便宜上「波浪変形計算システム」と表記している場合が あります。

メニューコマンドについて

- 「波浪変形計算システム」ではドロップダウンメニューの他、一部機能については ツールバーが使用できますが、本書ではドロップダウンメニューのコマンド体系で 解説しています。その際、アクセスキー(ファイル(F)の(F)の部分)は省略し ています。
- メニュー名は[]で囲んで表記してあります。コマンドに階層がある場合は[ファ イル]-[開く]のようにコマンド名を「-」で結んでいます。この例では、最初に[ファ イル]を選択して、次は[開く]を選択する操作を示しています。

画面について

- ・ 画面図は、使用するディスプレイの解像度によっては本書の画面表示と大きさなどが異なる場合があります。
- ・ 画面のDPIは通常のサイズを選択してください。大きなサイズでは画面が正しく 表示されない場合があります。

その他

- ハードディスクはドライブCとして解説しています。ドライブとは「C:¥XXXX」の「C」の部分です。使用する機種によりドライブ名が異なる場合があります。
- フロッピーディスクドライブはドライブAとして解説しています。使用する機種によりドライブ名が異なる場合があります。
- CD-ROMドライブはドライブXとして解説しています。使用する機種によりド ライブ名が異なる場合があります。
- ダイアログボックス内のボタンは、OK・キャンセルなどのように枠で囲んでいます。

一 目 次 一		
1. はじめに	1	
1-1. はじめに	1	
1-2.準備	1	
1-3.プログラムの起動	2	
2. 新しいデータを作成する	3	
2 – 1.「新規作成] メニューを使用する	3	
2 – 2. [要素入力]ー[マウス] メニューを使用する	3	
2-3. [要素入力]-[ファイル]-[DXFファイル読込み] メニューを使用する	4	
2-4. [要素入力]-[ファイル]-[CSVファイル読込み] メニューを使用する	6	
2-5. [要素入力]-[ファイル]-[TRSファイル読込み] メニューを使用する	8	
3.データ作成~計算まで(サンプル:平行等深線)	9	
3 一 1. 初期画面	9	
3 ー 2. 波浪条件を設定する	.10	
3-3.水深線を設定する	.12	
3-4. 地形線を設定する	.13	
3 – 5. 補助線を設定する	.15	
3-6. 一定水床のエリアを設定する	.17	
3 – 7. 地形フロックを設定する	.19	
3-9 透過率を設定する 	. 20	
3-10. 線分に設定された反射率・透過率を確認する		
3 - 1 1 計算領域を設定する	22	
3 - 1 2. 水深計算を実行する	23	
3-13.水深チェック図を表示してみる	.24	
3-14.計算格子を表示する	.27	
3-15.時間条件を設定する		
3 - 1 6. 波浪変形計算を実行する	28	
4. 計算結果から各種図面を作成	. 29	
4 - 1. 波高コンター図を作成	.29	
4-2. 波高(比)デジタルマップ図を作成	.31	
4-3. ベクトル図を作成	. 33	
4 – 4. 凶面枠の配置	. 35	
5. 不透過境界を設定する	. 36	
5 - 1. 不透過境界とは	.36	
5-2.サンプルデータを開く	.37	
5 - 3. 个透過境界を設定する	. 38	
6. 連続計算を実行する	. 39	
6 - 1.連続計算用データを作成する	. 39	
6-2. 連続計算を実行する	. 39	
6 – 3 . 連続計算結果を読み込む	.41	

1. はじめに

1-1. はじめに

「波浪変形計算システム(非定常緩勾配方程式)」は、主に漁港などの比較的水深の浅い 場所に位置する港の静穏度解析に用いられます。

本書(入力操作手順説明書)は、初心者の方が「波浪変形計算システム」を使用するための基本的な操作手順を学習することを目的に記述してあります。操作手順につきましては比較的単純なケースを想定しての説明となっております。

また、Windowsについての基本的な操作方法については、既にある程度習熟されているものとして記述しております。

インストールから起動までのセットアップ方法につきましては、操作説明書に記載して おります。こちらをご覧の上で、インストール及びユーザー登録を行ってください。また、

「波浪変形計算システム(非定常緩勾配方程式)」の動作環境・計算の考え方・計算容量・ 仕様につきましては「商品概説書」に記載しております。

1-2. 準備

「操作説明書」をご覧になりながら「波浪変形計算システム(非定常緩勾配方程式)」の インストールとユーザー登録を行ってください。

本書(入力操作手順説明書)を使用して「波浪変形計算システム(非定常緩勾配方程式)」 の使用方法を学習する前に、以下の資料を出力しておいてください。本書(入力操作手順 説明書)で使用するデータ類は、既定の値でそのままインストールを行った場合には以下 のフォルダに格納されています。

C:¥AEC アプリケーション¥波浪変形(非定常緩勾配方程式)¥DATA¥TUTORIAL

<印刷する資料類>

・平行等深線.pdf

また、必要に応じてご覧頂けるように「操作説明書」をお手元にご用意いただくと便利 かと思います。尚、「操作説明書」は「波浪変形計算システム」から呼び出すこともで きます。

<u>1-3.プログラムの起動</u>

マウスで、Windowsの[スタート]ボタンの[すべてのプログラム]から[AEC アプリケーション]-[波浪変形(非定常緩勾配方程式)]-[波浪計算]を選択してください。「波浪変形計算システム」が下のような状態で起動します。

初期状態では、子ウインドウは表示されませんので、[ファイル]-[新規作成]かもしくは[開く]を選択する必要があります。

プログラムの最上部にはプログラム名が表示されます。その下には、各種の操作や指示 を行うメニューがあります。その下にあるツールバー(絵付きのボタン)にはメニューの 一部が割り当てられています。

2. 新しいデータを作成する

<u>2-1. [新規作成] メニューを使用する</u>

新しいデータを作成するには、新しいウインドウを開く必要があります。[ファイル]-[新規 作成(N)]を選択することにより、起動時画面に新しいウインドウが表示され、編集メニ ューが選択可能となります。

次からのデータ入力のコマンドを使用することにより、点データや線分データを追加す ることが可能です。

2-2. [要素入力]-[マウス] メニューを使用する

このメニューを使用することにより、マウスで指定した任意の位置に対して点データあ るいは線分データを追加することが可能です。 既に汎用CADなどを使用して平面図を作成している場合には、DXFファイルにより地形形 状を入力することが可能です。

聖式) - [san	nple.mwv]		
要素入力Φ	要素編集♡	・ ツール(T) - ァ	りシュ作
マウス	► <u>s m</u>	n tt Kr K.	1
ファイル	► D>	<fファイル読込る< th=""><th>[≫] ∖</th></fファイル読込る<>	[≫] ∖
デジタイザ	• CS	SVファイル読込	æ ላና
座標指定	1	るファイル読込。	か
交点			
伸縮点			
垂直点			
角度·距離	指定		
オフセット	•		

メニューの[ファイル]-[DXFファイル読込み]を押してください。下のようなファイル を選択する画面が表示されます。読み込みたいDXFファイルを選択し、開く(O)を押 してください。

DXFファイル読み込み			? ×
ファイルの場所型:	合 २८ १४३७७१	💽 🖻 🗹	1 📑 🔳
1005.dxf			
iiii 庄折⊠.dxf			
Die FLUXI			
•			▶
ファイル名(N):	test.dxf		開(⊙)
ファイルの種類(工):	DXF ファイル (*.dxf)	•	キャンセル
	,		

次に、読み込むDXFファイルのデータの単位を選択する画面が表示されます。ファイ ル内の座標データに合った単位を選択してください。

読み込み座標単位	×
座標単位 ● ミリ ○ メートル	<u>ОК</u> <u>+</u> tури

- ※ 尚、読み込むDXFファイルのスケールは実寸スケール(1/1)です。また、座 標系は数学座標系となっていますので注意してください。
- ※ スプラインなどの曲線は読み込めませんが、ポリラインによる角度を持った曲線は 読み込み可能です。お手持ちのCADシステムで変換してから読み込んでください。
- ※ 本システムで読み込めるデータは、線分データのみとなっていますので、文字デー タなどは読み込みません。
- ※ 計算に必要のないデータはあらかじめ省いて下さい。

正常にDXFファイルが読み込めれば点データが赤色で、線分データが暗い緑色(未定義線) で表示されるはずです。

DXFファイルを入力する場合にデータの単位指定がありましたが、思った通りにデータが入 カできたかどうかを確認するには、[表示]-[計測]が便利です。

防波堤など、ある程度長さなどがわかっている部分を拡大表示し、次の作業を行います。

やってみる!!

計測を行う始点となる任意の位置をマウスの左ボタンで指定します。指定した始点位置からラ バーバンドが表示されますので、計測の終点となる位置までマウスを移動し、マウスの左ボタン を押して決定してください。次のダイアログが表示され、2点間の距離が表示されます。 右ボタンを押すと計測モードをキャンセルします。

読み込んだデータの防波堤の距離を計測したものが次の図です。思った距離がダイアロ グに表示されていれば、正常にDXFファイルの入力ができています。もしも思った距離が表示 されなければ、次のことが考えられます。

- ・DXFデータが1/1のデータではない可能性
- ・変換単位が違う可能性

<u>2-4. [要素入力]-[ファイル]-[CSVファイル読込み] メニューを使用する</u>

平面図の点データの座標をX,Y座標で持っている場合に使用します。

メニューの[ファイル]-[CSVファイル読込み]を押してください。下のようなファイルを選択する画面が表示されます。読み込みたいCSVファイルを選択し、開く(O)を押してください。

CSVファイル読み込み		· · · · · · · · · · · · · · · · · · ·	? ×
ファイルの場所型:	😋 data	- 🗈 🗹 🖻	
point.csv stest.csv			
ファイル名(<u>N</u>): ファイルの種類(<u>T</u>):	point.csv CSV 771/l/ (*.csv)	「「「」」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」<l< th=""><th></th></l<>	

次に、読み込むCSVファイルのデータの座標系を選択する画面が表示されます。フ ァイル内の座標データに合った座標系を選択してください。本システム内部の座標系は 数学座標系となっています。読み込むデータが測量座標系の場合、X・Y座標を入れ替 えて読み込みます。したがって、後から座標値を与えて測点を追加する場合は、数学座 標系の座標値を入力してください。

※ CSVファイルのデータは座標系に関わらずX, Yの順です。

X1,	Y 1
X2,	Y 2
Xn,	Υn

引き続き、入力された点データを結線しなければなりません。

メニューの[線分編集]-[結線]を押してください。マウスの左ボタンを押した任意の位置に最も近い点を検索し始点とします。引き続き終点となる点をマウスの左ボタンで指定します。右ボタンを押せば始点位置の指定に戻り、もう一度右ボタンを押すと結線モードがキャンセルされます。

弊社パッケージソフト「港内波高計算システム(透過堤モデル)」及び、「港内波高 計算システム(水深変化モデル)」のデータを読み込みます。過去に処理したデータを 本システムに移行したい場合に使用してください。

星式) - [san	nple.mwv]		
要素入力 ()	要素編集♡	">−ル(T)	メッシュ作
マウス	► <u>s m</u>	n tt 🕅	Ka 🛹
ファイル	D>	(Fファイル読	込み
デジタイザ	► CS	シンファイル読	込み
座標指定	TF	Sファイル読	込み
交点			, i
伸縮点			
垂直点			
角度·距離	指定		
オフセット	•		

メニューの[ファイル]-[TRSファイル読込み]を押してください。下のようなファイ ルを選択する画面が表示されます。読み込みたいTRSファイルを選択し、開く(O) を 押してください。

TRSファイル読み)	<u>ኦ</u> ው	? 🛛
ファイルの場所①:	🗀 サンプル	- 🖬 🎦 🗢 🔽
同サンブル trs		
ファイル名(<u>N</u>):	サンプル.trs	開((0)
ファイルの種類(工):	TRS ファイル (*.trs)	 キャンセル

データに含まれる線分データを全て読み込みます。陸域の境界線に関しては、地形属 性と反射率・透過率も設定され、地形ブロックも読み込みます。ただし、地盤高に関し ては、全て「境界有効」として与えられていますので、条件に合うよう適宜変更してく ださい。

※ 水深変化モデルは水深ブロックに関する線分(水深線に該当するもの)も未定義線 として読み込みますが、これはモデル化されている水深線であるため、そのまま使 用するのは難しいと考えます。

尚、入射波に関する条件も読み込みますが、計算領域の考え方や不規則波の場合には、 方向分割数に与えるパラメータの条件が違いますので、再設定してください。

また、港内波高計算システムで設定されている周期分割数が本システムの周期分割数 にセットされます。しかしながら、条件の意味が異なりますので修正してください。

3. データ作成~計算まで(サンプル:平行等深線)

3-1. 初期画面

[ファイル]-[開く]により、添付の「サンプルデータ(平行等深線)未定義」を開きます。デ ータを開いた状態が、前の「2.新しいデータを作成する」で説明した方法の内どれか で作成したデータの状態です。

では、これから波浪変形計算を行うためのデータを順を追って作成していきます。平 面図は、「平行等深線.pdf」を参照してください。ここに、反射率や水深線の地盤高など が記入されています。

3-2. 波浪条件を設定する

波浪変形計算を行うための各種条件を設定します。[設定]-[計算条件]を選択します。

計算条件	
計算方法 ○ 規則波 ○ 不規則波(波高重ね合わせ) ④ 不規則波(周期重ね合わせ)	周期重ね合わせ順 通周期→長周期 計算値の発散確認のため、 谷方法を1周期分検討することをおすすめします。 人射波周期が比較的短い場合) そ方法を15期分検討することをおすすめします。 人射波周期が比較的長い場合) 果は変わりません。〉 磁北 方向(度) 900 第二、 次庫からY軸方向への角度を入力
共通条件 入射波高値(m) 2.00 入射波周期(秒) 7.85 設計潮位(m) 1.00 砕波点付近地盤高(m) -3.00 最深地盤高(m) -10.00	入射波向 変形後の波向き ○ X軸からY軸方向への角度 ③ 北からの角度(左回り:正) ○ 北からの角度(左回り:正) 17.0 ○ 北からの角度(右回り:正) □ 16方位表記 NNW
不規則波 方向分布関数の分割数(方向分割数 方向集中度パラメータ 入射方向より右方向の成分波の広た 入射方向より左方向の成分波の広た 波高分割数(推奨値:100以上) 周期分割数(推奨値:5以上)	t) 20 25 ドリ(度) 90.0 ドリ(度) 90.0 F D D D D D D D D D C C L D D D D D D D D D D D D D

条件を画面と同様に入力します。各項目について説明します。

[計算方法]

不規則波(周期重ね合わせ)

[周期重ね合わせ順]

短周期→長周期 計算方法が不規則波(周期重ね合わせ)のため設定します。本計算手法は非定常

解析のため、計算値が発散するケースがよくあります。発散する位置は、一定では なく、データによりまちまちです。しかしながら、多くのケースの場合、発散する のは最も短い周期の場合か長い周期の場合であると考えられるため、ここで計算順 序を変更し、チェックを行うことができます。

[磁北] 90.0度

磁北の角度をX軸からY軸方向の角度で入力します。入射波向を北からの角度で入 力する場合に影響を及ぼします。

- [入射波高値(m)] 2.00m
- [入射波周期(秒)] 7.85秒
- 1.00m [設計潮位(m)]
- [砕波点付近地盤高(m)] -3.00m

計算領域のメッシュピッチ及び、「時間条件」で設定する「定常解までの繰り返し数」の参 考値を算出するために入力します。計算領域内では砕波しないと考えられるようなデータの 場合、最も浅い水深となる位置の地盤高程度の値を設定してください。

[最深地盤高(m)] -10.00m

[時間条件]で設定する「ムt算出用パラメータ」の参考値を算出するために入力します。計 算領域内で、最も深い水深となる位置の地盤高程度の値を設定してください。

「入射波向] 北からの角度(右回り:正)17.0度

今回のデータでは北から右回りの角度がわかっているため、それを指定します。

- [16方位表記]
- NNW

[計算領域回転角度の任意指定] しない

「しない」を選択した場合、指定した入射角が、計算領域に対して必ず直角入射となる ように図形を自動回転します。「する」を選択した場合、任意の回転角を指定し計 算領域に対して主波向きが角度を持つことができるようになります。ここでは、計 算精度の問題を考えて「しない」を選択します。

[方向分布関数の分割数(方向分割数)]	20分割
[方向集中度パラメータ(Smax)]	25
[入射方向より右方向・左方向の成分波の広がり]	90.0, 90.0
[周期分割数]	5分割
[計算領域-メッシュピッチ(m)]	2. Om

ここまで設定を行ったらОКボタンを押下し、条件を確定します。

<u>3-3.水深線を設定する</u>

[ツール]-[水深線]-[設定]により、未定義線(暗緑色)の線分に対して水深線の属性を設定します。同時にその水深線の地盤高も設定します。構造物などで水深線が分割されている場合でも複数の水深線を選択して地盤高を設定することが可能です。

必要な全ての水深線に対して地盤高を与えます。

3-4. 地形線を設定する

本データの場合、開始点から地盤高0.0mの地形線が続いていると考えられますので、 [ツール]-[地形線]-[連設定(地盤高)]で未定義線(暗緑色)の線分に対して地形線の属性を 設定します。同時にその地形線に対して地盤高(0.0)を設定します。連続線分の始点と 終点を選択することにより設定します。地形線の連続線分の指定の場合、線分の選択が 分岐で止まります。

同様に、折れ点まで0.0mが続きますので、今度は[ツール]-[地形線]-[単設定]で地盤高を設定 したい線分を選択します。ダイアログの地盤高を選択し、0.0を入力します。

次の囲みの箇所については、構造物を無視した計算を行いたい(平行等深線としたい)ため、[ッ -ル]-[地形線]-[連設定(有効/無効)]を使用します。

このように地形線メニューを使用して未定義線分に対して地形線の属性を付加します。

<u>3-5.補助線を設定する</u>

続いて、3-4で出てきたように構造物を無視した計算を行いたい場合などには、[ツー ル]-[補助線]を用います。下図のような部分ではよく水深線が分断されています。このま ま水深計算を行うと、予期せぬ水深線が選択されることにより、あまり良い補間ができ ないケースがあります。

まず、補助線属性を付加する前に未定義線がないといけません。[要素編集]-[線分編 集]-[結線]で、〇で囲んである位置の水深線同士を結線します。結線した線分は、未定 義線ですので、暗緑色となっているはずです。

補助線を指定するためにここでは、[ツール]-[補助線]-[単設定]を選択します。追加した 未定義線を選択します。正常に補助線属性が設定されれば、紺色の線分となります。尚、 この補助線は計算に有効な線分で、図化はされません。

その他必要な箇所に補助線を設定していきます。

3-6. 一定水深のエリアを設定する

続いて、航路のように人工的に浚渫などを行い、一定水深としたいエリアの設定を行います。本データの場合は、下図のように航路らしきエリアがありますので、それを設定します。

丸い囲みの未定義線(暗緑色)を水深線で設定してしまうと、未定義線内は一定水深となります が、指定した水深線が周りのメッシュに影響を及ぼし、正常な水深計算が行えなくなります。その 場合に便利なのが[一定水深線]です。これは、一定水深領域を確保する場合に有効となります。 水深計算では無視される線分ですが、図化は行います。 [ツール]-[一定水深線]-[設定]を選択し、一定水深線の属性を付加したい未定義線を選択します。

線分の分岐があるところまで連続線として認識します。正常に属性が付加されれば緑色で表示 されます。

引き続き、このエリアの内部を一定水深とするために、地盤高を設定します。[ツール]-[一定水深 ブロック認識]-[設定]を選択します。下図のようにエリアの中をマウスでクリックし、表示されたダ イアログに設定したい地盤高を入力します。

尚、実際に指定した地盤高がメッシュに反映されるのは、水深計算後です。

3-7. 地形ブロックを設定する

確実に海域と陸域を区別するために陸域境界を認識する必要があります。そのために 地形ブロックを設定します。[ツール]-[地形ブロック認識]-[設定]を選択します。

続いて、地形線の陸域側の適当な位置をマウスの左ボタンで指定してください。島堤 の場合は、閉じた領域の内側が陸域となります。陸域が閉じていない場合は、この後の 計算領域の設定により、地形線と計算領域で閉じた陸域を形成します。

尚、地形ブロックは1つの閉じた領域(地形線と計算領域での閉領域も含む)に対して1 つです。

※ 必ず陸域側を指定してください。プログラムではこの指定した位置により、海域・ 陸域を自動的に判断します。誤って海域側を選択した場合、陸域と海域が反対にな ります。

堤体幅は、透過率を与える場合には設定することを推奨します。ただし、この堤体幅 により波の位相が考慮され発散し易くなってしまうケースもあります。やむをえない場 合は、堤体幅は0.0mとします。

<u>3-8.反射率を設定する</u>

図面を元に陸域境界に反射率を設定します。連続線分に対して反射率を設定しますので、[ツール]-[反射率]-[連設定]を選択します。

正常に設定できれば、ダイアログに表示されている表示色で線分が表示されます。

引き続き、すべての陸域境界に対して反射率をセットします。

3-9.透過率を設定する

今回のデータでは、右上の島堤に対して透過率(0.5)を与えます。 島堤全体に透過 率を設定しますので、[ツール]-[透過率]-[連設定]を選択します。

3-10.線分に設定された反射率・透過率を確認する

設定された反射率・透過率を確認することができます。[表示]-[設定情報]-[反射率] 及び、[表示]-[設定情報]-[透過率]を選択してください。反射率が緑色で透過率が白色 で表示されます。尚、表示を消す場合には同じ作業を行ってください。

3-11.計算領域を設定する

計算格子に変換する領域を設定します。設定した領域内に含まれる陸域及び海域が計 算対象となります。尚、造波境界は常に計算領域の上面となっていますので、この面が 長くなるように領域を設定したほうが好ましいと考えられます。また、多方向不規則波 であることを考えた場合、着目地点が領域横方向の中央付近のほうが好ましい結果を与 えると考えられます。[設定]-[計算領域]を選択してください。

3-12.水深計算を実行する

設定した計算格子位置の水深を計算します。同時に陸域・海域の認識及び、格子への 反射率、透過率の設定を行います。[メッシュ作成]-[水深計算]を選択します。計算中の ダイアログが表示され、計算が実行されます。計算が正常終了し、陸域及び一定水深領 域が正常に認識されれば、下図のように着色されます。思ったように一定水深領域や陸 域が着色されない場合には、その付近で線分が分断されていることが考えられます。そ の場合には、線分編集などを使用して結線の修正などを行う必要があります。

3-13.水深チェック図を表示してみる

水深計算により各格子に割り当てられた水深を確認することができます。水深コンタ 一図と水深デジタルマップ図を表示することが可能です。これにより、思ったような水 深となっているかが確認できます。 [メッシュ作成]-[チェック図作成]-[コンター図]を 選択します。

ここでは、コンターの表示範囲を計算範囲と同値に、表示間隔を0.1と設定してみます。コンター 線が緑色で表示されますので確認してください。

続いて、実際に各格子に割り当てられた数値を確認したい場合には、[メッシュ作成]-[チェック図作成]-[デジタルマップ図]を選択します。

ここでは、20.0mピッチで表示したいので、20.0を入力し、OKボタンを押下します。その後、計算領 域内の任意の位置をマウスの左ボタンで指定してください。指定した間隔で割り当てられている 水深値が表示されます。確認してください。

※波浪卖形(非定常缅甸配方程式) ~ [平行答深線,mwv]	
🎦 ファイルを) 表示② 該定⑤ 図面枠② 要素入力の 要素編集② ツール① メッシュ作成処 途渡計算② コンター編集② チジタルマッフ編集② ヘツト編集② A@Drawの ウィントウ逊 ヘルブむ	_ 8 ×
🗅 🖆 🖬 🚳 🐧 🔍 🔍 🥂 🔍 🧠 🌐 🏛 🖬 🖬 🖬 💼 🚰 🔚 📰 🚟 🎬 📅 🕈	
	^
a a had had had a had a had a had a had a had a had had	
The share a sh	
had the the state of a state of a state of the the the the state of th	1 million
A K K K K WWW K A F K K K K K K K K K K K K K K K K K	
and a to be the second se	
a nation and a hard had a hard a second and a second that have had had hard hard hard hard hard hard h	
The second set of the set of the second s	and a second
To the first of th	
The second second second of the / 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1	
The second se	
The second s	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
- The second	
I BAY DA BAY WAY A A A WAY A ANY A WAY A WAY A MANA A A A A A A A A A A A A A A A A	
and the second share a	
we have a set a set and set at a set at a set	
THE THE THE AND	
and the second of the second o	
and the second start when the second start w	
CALLAND AND AND AND AND AND AND AND AND AND	
and the state of the	
and an	
15 Jay 16 15 16 19 19 19 19	
ST 15 19 19 19 19 19 19	
JF 19710 10 10 10 10 10	
メッシュ数:14/229	
	~
1000	-

データが確認できましたら、いつまでもチェック図が表示されていると邪魔なのでチェック図を非 表示にしたいと思います。[設定]-[図面条件]を選択します。下のような図面条件ダイアログが表 示されます。

図面条件		
備考		
図面枠 枠サイズ A3 <u>・</u> よこ <u>・</u>	- 作図する値	各種サイス [*] (mm) 平均値文字サイズ [*] 25 コンター文字サイス [*] 25
余白(mm) 上 20 下 10 右 15 左 10	「作図図面」 「 コンター図 「 テジネルマッフ"図 「 カラーコンター図	r シタルマップ文子サイズ 波高(比)・水深 [25 波向 [25 ヘットルサイズ [*]
作図スケール 1/2500 画面回転角(度) 17.0 中心座標 × 4544.159 Y -10034.938	色数	5.0 ~ 5.0 反射率文字サイズ [*] 2.5
等深線作図	- パッシュ位置に当たる矢の部分一 ⑥ 中心 ⑦ 先端 ◎ 未端 厂 波向(5ッツルマッフ1図) ☑ 水深チェック図(5・5つ) ☑ 水深チェック図(5ッツルマッフ1図)	マス(CYEN) P ここのチェックを はずせば非表示と
格子作図 「陸域 「全体 陸域塗り消し でしない でする 緑色 」	 図面情報 ▽ テ〜ワファイル名 ▽ 反射率(凡例) ▽ 反射率(数値) - スクール作図 ○ 文字 ○ 日盛 	ひります。 Dn)/n) OK キャンセル 初期値に設定 初期値に戻す ※10_、[備考]、[図面枠]のカクール・回転角 ・中心座標】[作図する値]、[作取図面向]よ 初期構造定項目に含まれません。

3-14.計算格子を表示する

陸域境界及び、境界に割り当てられた反射率や透過率などを格子のイメージで確認す ることができます。[表示]-[設定情報]-[計算格子]を選択します。この表示モードで一 度はデータを確認することを推奨します。

尚、反射率・透過率の表示のためには[表示]-[設定情報]-[反射率]及び[表示]-[設定 情報]-[透過率]がチェックされている必要があります。

3-15.時間条件を設定する

非定常緩勾配方程式は、時間領域の取り扱いであり、定常解を求めるまでに全計算領域に おける時々刻々の水面変動を計算していく必要があります。ここでは、そのために必要な各種条 件を設定します。[設定]-[時間条件]を選択します。今回のデータの場合は、初期参考値の ままとしておきます。尚、このパラメータについては、データにより適切な値に適宜変 更する必要があります。

3-16. 波浪変形計算を実行する

ここまでで、計算に必要なデータはそろいましたので、[波浪計算]-[計算]を選択します。 波浪計算の実行確認ダイアログが表示されますので、問題なければそのまま進めてくだ さい。データが保存され、波浪変形計算が実行されます。

4. 計算結果から各種図面を作成

<u>4-1. 波高コンター図を作成</u>

波浪変形計算結果から波高コンター図を作成します。[コンター編集]-[コンター発生] を選択してください。波浪変形計算直後に本項目を実行した場合には、「計算結果を読 み込みました。データファイルに保存します。」と表示された確認ダイアログが表示さ れますので、OK ボタンを押下してください。引き続き、コンターを発生するダイアロ グが表示されます。

🧱 波浪麦形(非定常缓勾配方程式) - [平行等深線.mwv]		_ @ X
▲ 77化(1) 表示(2) 説定(2) 回曲枠(2) 要未入力(4) 要未編集(2) ケール(1) かり(作成(4)) 流動計算(2) エグー編集(2) デジ(3)を75(編集(2) へり(4編集(2) AGDraw(2))	ウベトウ 🖤 - ヘレフ 🖽	_ 6 ×
🗅 📽 🖬 종 🐧 역 약 산 111 12 12 12 11 11 11 11 11 11 11 11 11		
コンターの表示色 ^{10-表示集件} 囲を	/ターの表示軋 - 設定します。	
の範囲を設定しま す。		
ま示開設(Pito) 住意表示(A) (Pito) 全部時 全部時 ・ ジルンリックで戦争	ターの表示ピッ 設定します。	יע
9 v D a B 114/28		
 く) () <li< td=""><td>7354 320/137 453</td><td>NUM</td></li<>	7354 320/137 453	NUM

ここでは、表示間隔のみ0.1と指定し、その他の項目は初期値のままOKボタンを押下 します。詳細な設定については、操作説明書を参考にしてください。

引き続き、コンター線に対してそのコンター線が指し示す高さを記入していきます。 数値を記入したい位置を拡大し、[コンター編集]-[数値記入]を選択します。高さを記入 したいコンター線の任意の位置をマウスの左ボタンで指定します。指定した位置に高さ が記入されます。同じ位置を再度指定すると数値が消去されます。

波浪変形計算結果から波高(比)デジタルマップ図を作成します。[デジタルマップ編集]-[波高(比)]-[全記入]-[マウス指定]を選択してください。波浪変形計算直後に本項 目を実行した場合には、「計算結果を読み込みました。データファイルに保存します。」 と表示された確認ダイアログが表示されますので、OKボタンを押下してください。引 き続き、デジタルマップを発生するダイアログが表示されます。

🧰 波浪変形(非定常纒勾配方程式) - [平行等深線.mwv]	
→ ファイル(E) 表示(V) 設定(S) 図面枠(Z) 要素入力(D) 要素編集(Y) ソール(T) メッシュ(ft成(M) 波浪計算(C) エン AGDraw(P) ウルトウ(M) ヘルプ(H)	ウー編集(L) テシウルマップ編集(D) ヘウトル編集(B)
다 🌶 🖬 🖨 🖪 🍳 🤍 🦓 💷 🖻 🔍 🍳 ۞ 📟 🛱 🌃 📶 📰 🛣 🗟 를 💶 🎬	
デジタルマップの表示問題 表示問題(m) 株 000 庭 200 がっぱいが(m) 20 基準座標(m) X 000 Y 000 〇K キャンセル シッシュ数: 141229	デジタルマップの 表示間隔を設定し ます。ここでは、 20.0, 20.0 と設定 します。
Ctrl+左夘ックで地形/水深/補助線の高さを表示します	7759.538/-4.161 NUM

ここでは、20.0mピッチで表示したいので、20.0を入力し、OKボタンを押下します。その後、計算領 域内の任意の位置をマウスの左ボタンで指定してください。指定した間隔で割り当てられている 波高(比)値が表示されます。確認してください。

コンター図を非表示にしたい場合や波高値と波高比を切り替えたい場合は、[設定]-[図面条件] を選択します。下のような図面条件ダイアログが表示されます。

図面条件		
備 考		
	「作回する値」	冬插#/フシ(㎜)
	○ 波高比	波高値と波高比は
JLT 💌	ⓒ 実波高値	
余白(mm) 上 20	作図図面	
下 10	▼ コンター図	₫ 。
	▼ 7°%₩7993%	
左 10		ここのチェックを
作国スケール 1/2000	€ 全色 C 4色	はずせば非表示と
画面回転角(度) 17.0	口次-線表示色	なります。
中心座標 × 4544.159		
Y -10034.938	「メッシュ位置に当たる矢の部分」	マウス(ヒツセル) 5
等深線作図	⑥ 中心 ○ 先端 ○ 末端	タブレット(mm) 1
○ しない (● する ― 等深線値作図 ――――	□ 波向(デジウルマッブ図)	- 平均値計算方法
C しない © する	□ 水深チェック図(コンター図)	○ 計算しない
	□ 水(〒チェック図(デジ*タルマッフ*図)	④ (KD1+KD2+ +KDn)/n
		C SQRT((KD1*KD1++KDn*KDn)/n)
		OK +++)/7/1
· 陸歇塗り道し で しない	▼ 反射率(数値)	
○する 緑色 👤	- 7ケール作家	
	 ○ 文字 ○ 日盛 	※1旦し、1備考よ1181面砕1のスケール・回転角 ・中心座標、「作図する値」、「作図図面」は
		利期1回設定項目に含まれません。

<u>4-3.ベクトル図を作成</u>

波浪変形計算結果からベクトル図を作成します。[ベクトル編集]-[全記入]-[マウス指 定]を選択してください。波浪変形計算直後に本項目を実行した場合には、「計算結果を 読み込みました。データファイルに保存します。」と表示された確認ダイアログが表示 されますので、OKボタンを押下してください。引き続き、ベクトル図を発生するダイ アログが表示されます。

 ※波泉を形(非定常転勾配方程式) - (平行等方 アイル(P) 表示(V) 試定(S) 回面枠(2) 異奈/ AGDraw(P) ククトウ(M) ペルプ(H) ○ ご こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ	202 mwv] 570 要素編集化 2~ル① 3/24作成10 流用計算② I (② 四 井 🏙 🖸 📕 📰 古 🕢 信 謡 🎬	→-編集化 デジネバッジ編集① ヘジト編集① - ♂ × - ○ ×
ベクトル図の表示 範囲を設定しま す。	ペクトルの表示間層 東示間層(m)株200 第六丁間層(m) 水方注つデ(m) 空 水方注回(m) 20 米 20 ※ 第二 21 ※ 22 322 323 323 - <t< td=""><td>× ベクトル図の表示 間隔を設定しま す。ここでは、 20.0, 20.0 と設定 します。</td></t<>	× ベクトル図の表示 間隔を設定しま す。ここでは、 20.0, 20.0 と設定 します。
Ctrl+左別ックで地形/水深/補助線の高さを表示します		7651.467/378.938 NUM

ここでは、20.0mピッチで表示したいので、20.0を入力し、表示範囲は初期値のままOKボタンを押 下します。その後、計算領域内の任意の位置をマウスの左ボタンで指定してください。指定した 間隔で割り当てられている波向のベクトルが表示されます。確認してください。

デジタルマップ図を非表示にしたい場合やベクトルの大きさを変更したい場合は、[設定]-[図面 条件]を選択します。下のような図面条件ダイアログが表示されます。

4-4. 図面枠の配置

作成した各種図面を印刷するためには、図面枠を配置する必要があります。 [設 定]-[図面枠配置]を選択してください。マウスの左ボタンを押下した位置を中心とし、 黄色の図面枠が表示されます。適当な位置に配置を行ってください。右ボタンで確定す れば紫色で表示されます。

尚、作図スケールや図面の余白などの設定は、[設定]-[図面条件]を選択します。下のような 図面条件ダイアログが表示されます。

5. 不透過境界を設定する

5-1. 不透過境界とは

本システムでは、計算領域内を多数の格子でモデル化することにより、波浪計算を行います。計算対象となるのは計算領域内のみであり、領域外のデータはすべて無視され ます。また、波浪計算は計算領域の境界部分に波を発生させ、時々刻々の水面変動および線流量を定常解が得られるまで行います。その際、入射波が直角入射の場合には、最 も沖側の境界部分からのみが造波境界となります。それ以外の場合には、波が入射する であろう側方境界までもが造波境界となります。

計算に必要な構造体はすべて計算領域内に含めるよう、設定を行わないと正しい計算 結果を得ることはできません。しかしながら、各種制限事項や計算時間などの問題で、 やむを得ず必要な構造体を計算領域外に設定しなくてはならないケースなどがあります。 そういった場合、計算領域の設定位置によっては、本来波が入射しない箇所から波が入 射してしまうケースなどが考えられます。そのようなケースの場合に指定した境界から 波が入射しないように設定できます。

次にサンプルデータを例にして側方不透過境界の説明を行います。

[ファイル]-[開く]により、添付の「サンプルデータ(側方境界)」を開きます。

サンプルデータでは、これまで説明してきた作業を終了し、既に計算領域が設定して ある状態になっています。本データの場合には、沖の島堤に対して透過率が与えてあり ます。透過率が設定してある構造体は、できるだけ波向きに対して直角に設定すること が理想です。それらを勘案し、計算領域を設定しました。(本来は、横方向に領域をも っと広く取るべきです。)

[メッシュ作成]-[水深計算]により水深計算を実行してください。

すると、上図のように陸域が茶色く着色された状態となり、本来陸域であるはずの部 分が閉じられていないことがわかります。今回の波向きでは、②の方向から波が入射し ます。そのため、②側の側方境界も造波境界となります。しかしながら、このままでは ②の部分から波が入射してくることになります。また別の理由からもこのままでは波浪 計算できません。(詳細は、取り扱い説明書「波浪計算:計算」参照)

そのような場合に側方不透過境界を用います。次に不透過境界の設定方法を記述します。

5-3. 不透過境界を設定する

①②の位置を不透過境界で閉じて連続した陸域に設定します。対象位置を拡大し、[メ ッシュ作成(M)]-[不透過境界設定/解除]を選択します。計算領域の境界が黄色で表示 されますので、マウス(左)ボタンにより、②位置を押下します。すると、下図の〇の ように、選択された境界が陸域よりも濃い茶色で着色されます。内部的には、入射方向 に関係なくチェックを行いますので、同様に①位置も設定しておきます。

尚、本設定は再度水深計算を行うと解除されますので、再設定の必要があります。また、領域全体が一定水深領域でかつ入射波が斜め入射の場合、側方境界の入射波が不安 定になることを確認しております。もしもそのようなケースの計算を行う必要がある場 合には、側方境界を不透過境界に設定することを推奨します。

6. 連続計算を実行する

6-1.連続計算用データを作成する

波浪変形計算はデータにより大変時間がかかる場合があります。そのため、波浪変形計 算のみを連続で行う「連続計算プログラム」を別途用意しています。退社前に実行して 翌朝結果をみる場合や、他のパソコンで実行する場合などに便利です。連続計算を行う 場合は、まず計算用データを作成する必要があります。[波浪計算]-[連続計算用データ作 成]を選択してください。「連続計算用にDMCデータを作成しました。」と表示された 確認ダイアログが表示されますので、OKボタンを押下してください。この処理を連続 計算を実行するデータ全てに対して行ってください。

<u>6-2.連続計算を実行する</u>

「波浪変形計算システム」で作成したDMCデータを元に計算処理を連続して実行しま す。[ファイル]-[アプリケーションの終了]で「波浪変形計算システム」を終了後、マウスで Windowsの[スタート]ボタンの[すべてのプログラム]から[AEC アプリケーション]-[波浪 変形(非定常緩勾配方程式)]-[連続計算]を選択してください。「連続計算システム」が 下のような状態で起動します。

起動時には、連続計算を行うデータが1件も登録されていない画面が表示されます。[ファイル]-[開く]を選択すると、先ほど作成したDMCデータの一覧が表示されます。連続計算を行うデータを選択してください。Ctrlキーを押しながらマウスの左ボタンで同時に複数のファイルを選択できますが、選択の逆順で計算を実行します。最初に計算したいファイルは最後に選択するようにしてください。「ファイル名」の表示は計算実行順ですので確認してください。

連続計算用DMC7	ァイル読み 込み	? 🛛			
ファイルの場所型:	○ 初心差田マニュアル	▼ ⇐ Ê ➡ II			
していた 最近使ったファイル	平行等〉深線2.dmc 平行等〉深線.dmc 干行等〉深線_ org.dmc	Ctrl+左クリックで複			
		数選択が可能です。最初に			
7,29197		計算したいファイルは最後			
₹7 F¥1\$). 1		に選択してください。			
₹1 <u>1</u>), 21 1), 21 - \$	計算実行順				
マイ ネットワーク					
	ファイル名(W): 「王行等深線.dmc" "平行等深線2.dmc" 聞(@) ファイルの種類(T): DMC ファイル (*.dmc) チャンセル				

リスト部分に読み込んだデータファイル名、タイトルが表示されます。「状態」は未計 算を表す「待ち」と表示されています。

画 連続計算 - 波	沒変形計算(非定常緩勾配方程式)	
ファイル(<u>F</u>) 編集(E)	連続計算(C)	∿⊮7°(<u>H</u>)	
ファイル名 平行等演練 平行等演練2	&1hu		状態 待ち 待ち

[連続計算]-[開始]で連続計算を開始します。「状態」は、「計算中」→「終了」と順次表示が変わっていきます。全て「終了」となりましたら、[ファイル]-[アプリケーションの終了]で「連続計算システム」を終了してください。

Ē	国 連続	計算一級	浪変形計算(非定常緩勾配力	5程式)		×
2	ファイル(<u>E</u>)	編集(<u>E</u>)	連続計算(<u>C</u>)	∿⊮7°(<u>H</u>)			
	ファイ) 平行等 平行等	レ名 深線 深線2	 タイトル			 終了 終了	-

6-3.連続計算結果を読み込む

マウスでWindowsの[スタート]ボタンの[すべてのプログラム]から[AEC アプリケーション]-[波浪変形(非定常緩勾配方程式)]-[波浪計算]を選択してください。「波浪変形計算 システム」が下のような状態で起動します。

[ファイル]-[開く]で連続計算を行ったデータを開きます。

「4. 計算結果から各種図面を作成」と同じ作業で結果の確認が行えます。この作業を連続計 算を実行したデータ全てに対して行ってください。