港湾設計シリーズ

控え矢板式係船岸6

Ver 1.X.X

操作説明書

★ 索 アライズソリューション

〒730-0833 広島市中区江波本町4-22 Tel (082)293-1231 Fax (082)292-0752 URL http://www.aec-soft.co.jp Mail:support@aec-soft.co.jp

マニュアルの表記

システム名称について

 本システムの正式名称は「控え矢板式係船岸6 Ver1.x.x」といいますが、本書内で は便宜上「控え矢板式係船岸6」と表記している場合があります。

メニューコマンドについて

- 「控え矢板式係船岸6」ではドロップダウンメニューの他、一部機能についてはス ピードボタンが使用できますが、本書ではドロップダウンメニューのコマンド体系 で解説しています。その際、アクセスキー(ファイル(F)の(F)の部分)は省略 しています。
- メニュー名は[]で囲んで表記してあります。コマンドに階層がある場合は[ファイル]-[開く]のようにコマンド名を「-」で結んでいます。この例では、最初に[ファイル]を選択して、次は[開く]を選択する操作を示しています。

画面について

- ・ 画面図は、使用するディスプレイの解像度によっては本書の画面表示と大きさなどが異なる場合があります。
- 「控え矢板式係船岸6」は、画面の解像度が 800×600ドット以上で色数が256色以 上を想定しています。また、画面のフォントは小さいサイズを選択してください。 大きいフォントでは画面が正しく表示されない場合があります。

その他

- マウス操作を基本として解説しています。マウスは、Windowsのスタート-[設定] [コントロールパネル]-[マウス]で右利き用に設定してある物として解説しています。
- ハードディスクはドライブCとして解説しています。ドライブとは「C:¥XXXX」の「C」の部分です。

一 目 次 一	
1. お使いになる前に	1
1-1. はじめに	1
1 - 2. 準拠基準及び参考図書	1
1-3.その他	1
	<u>_</u>
2. フロクラムのセットアッフ	2
2-1. プログラムのインストール	2
2-2.ユーザー登録	2
2-4.プログラムのアンインストール	3
3. 検討処理を始める前に	
3-2. 装備している機能の一覧	
3 - 3. 処理の流れ	6
3-4. テータの作成/保存	8
	9
<i>鋼矢板テータの追加</i>	9
PC矢板データの追加	
腹起しデータの追加	
部分係数の追加	
検討モードの切り替え	14
3-6.よくあるご質問の確認を行う	14
3-7.ライセンス認証ユーザーページ	15
3 – 8.更新履歴の確認	16
3-9.直ちに最新バージョンのチェックを行う	17
3-10.起動時に最新バージョンの自動チェックを行う	
4. データ入力・修正	
1 _ 1 甘大久州	10
4 - 1. 本平宋竹	
第1ダノ(政訂朱件1)	
第4タノ(高さ粂忤2-控え版)	
第4タノ(局さ余件2-控え組机)	
<i> </i>	
4 - 2. 地震時条件	
第1タフ(地震時1)	29
第2タフ(地震時2)	
4 - 3. 前面矢板条件	
第1タフ(前面矢板)	
第2タブ(矢板任意)	
第3タブ (鋼管指定)	
第4タブ(PC矢板任意)	
4 - 4. タイ材・腹おこし材条件	
第1タブ(タイ材ーグラウンドアンカー工法以外)	
第1タブ(タイ材-グラウンドアンカー工法)	
第2タブ(腹おこし材)	
4 - 5.控え工条件	51
第1タブ(控え矢板・直杭-条件1)	51

	第2タブ(控え矢板・直杭ー条件2)	. 54
	第3タブ(控え矢板・直杭-矢板任意)	. 56
	第4タブ(控え矢板・直杭-鋼管杭指定)	. 57
	第5タブ(控え矢板・直杭-PC矢板任意)	. 58
	第6タブ(控え矢板・直杭-H形鋼指定)	. 59
	第1タブ(控え版-条件)	. 60
	第2タブ(控え版-安全係数)	. 62
	第1タブ(控え組杭-条件)	. 63
	第2タブ(控え組杭-杭条件)	. 65
	第3タブ(控え組杭-支持力条件)	. 66
4	4 - 6. 腐食条件	. 69
	<i>第1タブ(腐食) </i>	. 69
	第1タブ(腐食) -河川モード	. 71
4	4 - 7. 土層条件	.72
	第1タブ(陸側)	. 72
	第2タブ(海側)	. 76
	第3タブ(裏込め形状)	. 77
	第4タブ(置換え土層)	. 78
4	4 - 8. 任意土圧	. 82
	第1タブ(陸側土層)	. 82
	第2タブ(海側土層)	. 83
	第3タブ(置換え土層)	. 84
	第4タブ(控え版-主働側)	. 85
	第5タブ(控え版-受働側)	. 86
4	4 一 9. 他外力条件	.87
	第1タブ(その他外力)	.87
4	4 一 1 0. 模式図	.88
	第1タブ(模式図)	. 88
5	计管定行,框画作成	90
5.	前身大门、板赤作风	. 09
í	5 - 1. 実行	. 89
Ę	5 ー 2. 控え版断面計算	. 89
Ę	5-3. 警告メッセージー覧	. 89
Ę	5-5. エラーメッセージー覧	.95
6.	帳票印刷	103
		100
(うー 1. 基本 画 面 の 説 明	103
		101

1-1. はじめに

この操作説明書では、「控え矢板式係船岸6」のインストールから起動までのセットアップ方法、及びプログラムの基本操作について記述してあります。動作環境・計算の考え 方・計算容量・仕様につきましては「商品概説書」をご覧ください。

1-2. 準拠基準及び参考図書

本システムが準拠あるいは、参考にしている図書は次のようになっています。

•	港湾の施設の技術上の基準・同解説	平成30年5月	日本港湾協会
•	港湾構造物設計事例集	平成30年12月	沿岸開発技術研究センター
•	港湾の施設の技術上の基準・同解説	平成11年4月	日本港湾協会
•	港湾構造物設計事例集	平成11年4月	沿岸開発技術研究センター
•	漁港・漁場の施設の設計参考図書	2015年版	水産庁
•	道路橋示方書・同解説	平成29年11月	日本道路協会
•	道路橋示方書・同解説	平成24年3月	日本道路協会
•	杭基礎設計便覧	平成27年3月	日本道路協会
•	建設省河川砂防技術基準(案)同解説	設計編[I][Ⅱ]	
		平成9年9月	日本河川協会
•	災害復旧工事の設計要領	平成14年版	全国防災協会

※ 港湾の施設の技術上の基準・同解説 平成30年5月版 では、構造物の性能照査が荷 重抵抗係数アプローチによるレベル1信頼性設計法に基づく方法(部分係数を用いた 設計用値による性能照査式)に変更となり、部分係数の与え方が大きく変わりました。 そのため、本システムでは平成19年4月版は準拠基準となっておりません。従来の材 料係数アプローチでの検討が必要となった場合には、以前のシステムである「控え矢 板式係船岸5(部分係数法)」を利用していただくこととなります。

1-3. その他

「使用許諾契約書」は、本システムインストール先フォルダ内にある「使用許諾契約書.PDF」を見ることにより、いつでも参照できます。

<u>2. プログラムのセットアップ</u>

2-1. プログラムのインストール

- (1) Windowsを起動します。
- (2)「製品情報&ダウンロード」(http://www.aec-soft.co.jp/public/seihin.htm)
 にて、ご希望のソフトウェア名をクリックします。
- (3)「最新版ダウンロード・更新履歴」をクリックします。
- (4)「最新版ダウンロードはこちら」をクリックして、ダウンロードします。
- (5) ダウンロードしたSETUP. EXEを実行し、インストールを実行します。

インストール作業は管理者権限のあるユーザーでログインしてからセットアップして下 さい。

2-2. ユーザー登録

本プログラムをご利用頂くためには、ユーザー登録を行う必要があります。以降にその手順を示します。

- ※ 事前に弊社からお知らせしている製品のシリアルNoと、仮ユーザーID・仮パスワード (変更済みであれば、変更後のユーザーID・パスワード)をご用意ください。
- (1) [スタート] ボタンをクリックし、 [プログラム] [AEC アプリケーション] [控え矢板 式係船岸] をクリックしプログラムを起動します。インストール直後に起動した場 合、データ入力等のメニューは使用不可の状態です。
- (2) [ヘルプ]-[バージョン情報]をクリックします。

(3) [ユーザー登録]ボタンをクリックします。

1-ザ-登録				
ユーザー登録画面				
ӯIJ7ル№ <mark>₩НҮТ6ХХХХХХ</mark>				
-認証方法 ○ 評価版 ⓒ インターネット	認証情報 利用者名 ユーザーID al バスワード *: 識別番号	2訂太郎 33j91m *****		
	登録	キャンセル		

- (4) お知らせしている製品のシリアルNo(半角英数12文字)を入力します。
- (5) 認証方法で「インターネット」を選択します。認証情報入力部分が入力可能となりま すので、次の項目を入力してください。
 - 利用者名:利用者を識別するための任意の名称です。Web管理画面に表示され、現在 使用中であることがわかります。
 - ユーザーID:システムを動作させるためのユーザーIDを入力します。不明な場合に は、本システムを管理している御社管理者に問い合わせて確認してく ださい。
 - パスワード:システムを動作させるためのパスワードを入力します。不明な場合に は、本システムを管理している御社管理者に問い合わせて確認してく ださい。

以上が入力し終えたら、[登録] ボタンをクリックします。入力に間違いがあればエ ラー表示されます。

(5) [バージョン情報] に戻りますので [OK] ボタンでメニューに戻ります。使用不可だ ったメニューが使用可能の状態になります。

<u>2-4. プログラムのアンインストール</u>

- (1) Windowsを起動します。
- (2) [スタート]-[Windowsシステムツール]-[コントロールパネル]より[アプリケーションの追加と削除]を起動してください。ご使用の環境によっては[プログラムの追加/削除]となっている場合があります。
- (3) インストールされているプログラムの一覧表が表示されますので、「控え矢板式係船 岸6」を選択してください。
- (4) 選択したプログラムの下に[変更と削除]ボタンが表示されますので、このボタンを 選択してください。自動的にアンインストールプログラムが起動します。
- (5) アンインストールプログラムの指示に従ってアンインストールを実行してください。
- (6) 主なプログラムファイルは自動的に削除されますが、一部のファイルが削除されずに残っている場合があります。そのままでも問題ありませんが、完全に削除したい場合には以下の手順で削除することができます。
- ※ 管理者権限のあるユーザーでログインしてください。
- ※ エクスプローラで、システムをセットアップした位置にある[AEC アプリケーション]の下の [控え矢板式係船岸6]フォルダを削除してください。

3. 検討処理を始める前に

<u>3-1.基本画面の説明</u>

システムを起動すると下のような画面が表示されます。起動時には「新規データ」を読み込むようになっています。各設計条件は、メニューより選択するか、対応するボタンをクリックすることでタブ画面が切り替わりますのでそこに入力します。

ファイル(F) オプション(O) データ入力(I) 計算(C)	NI7°(H)	
		港湾·漁港
業務名称 未定義	(Max:32文字)	
 → 法注意 	◎ フリーアースサポート注 ※本項目を切替え	
○ 油港基準	○ かんか いる た場合、[モーメント ○ たわみ曲線法 参計算する範囲]の	
	○ ロウの方法 割2 ○ ロウの方法 割2	
一部分係数を考慮した検討		
 C 検討する 	控え工の形式	
● 検討しない	 ● 控え失板・直杭 ○ 控え版 	
北京部の小田田川(中国人)(京田市)	 ○ 控え組杭 	
◎ 砂管土のみ ***//****	○ グラウンドアンカー工法	
○ 粘性土含む □ P/51系数	- 十 圧 強度の設定方法	
	 ● 土圧計算により算定 	
	○ 入力値により設定	
□ 船舶のけん引力作用時の検討		
1個所の係船柱に作用 0000	_ 丸め方法	
すっしんらりバKN 「「「」」 けん引力を分担するターム	○ 五捨五入(JIS Z8401 規則A)	
子材本数(本)	C 四捨五人(JIS 28401 規則B)	
□ 津波引き波時の検討		
		1

【メニュー構成】

〔ファイル(F)〕 データファイルの作成/保存、帳票印刷を行います。

[オプション(0)] 任意鋼矢板・任意PC矢板・任意腹おこし・部分係数データの編集を 行います。また、港湾漁港モード、河川モードの切り替えを行いま す。

- 〔データ入力(I)〕 検討に必要な各種データを入力します。
- 〔計算(C)〕 設計条件により計算を行い、報告書を作成します。
- [^ルプ(H)] システムの^ルプ・更新、バージョン情報を表示します。

新しくデータを用意します。 既存のデータファイルを読み込みます。 元のデータファイルに上書き保存します。 新しく名前を付けて保存します。 計算結果を印刷します。 最近使ったデータを最大4件表示します。 プログラムを終了します。
任意の鋼矢板を追加します。 任意のPC矢板を追加します。 任意の腹起しを追加します。 港湾・漁港/河川モードを切り替えます。 部分係数の追加/変更を行います。 データの標高を一括して下げます。
設計検討の基本となるデータを設定します。 地震時に関するデータを設定します。 前面矢板に関するデータを設定します。 外材、腹おこし材に関するデータを設定します。 控え工に関するデータを設定します。 な食に関するデータを設定します。 土層に関するデータを設定します。 任意の土圧に関するデータを設定します。 その他の外力を設定します。 条件から作成した模式図を表示します。
設計計算の実行します。 控え版の断面計算を実行します。
操作説明書を表示します 商品概説書を表示します HPよりFAQを表示します バージョン番号/シリアル番号を表示します ライセンス認証ユーザーページへ遷移します 更新履歴を表示します 最新バージョンの確認を行います 常にバージョン確認ダイアログを表示します。

3-3.処理の流れ

本プログラムは、一般的には以下のように作業の流れで計算を行います。各工程での作業 は、次章以降に詳説してあります。また、データを修正する場合には任意の箇所に戻って その箇所以降の作業をやり直しても構いません。

このフローチャートは一般的な作業の流れであって、必ずしもこの順番どおりでなけれ ば計算できないというわけではありません。

尚、部分係数については、「オプション」-「<u>部分係数の追加</u>」により、常時確認される ことを推奨します。

10 控え矢板式係船岸6 Ver.1.0.0 - 無題		
[ファイル(F)] オプション(O) データ入力(I) 計算	⊈(C) ∧ルフ°(H)	
新規作成(N)		
開<(O)		港湾,涌港
上書き保存(S)	控え工 腐食 土層 任意土圧 他外力 模式図	16/5 /8/6
名前を付けて保存(A)	記念件1 高さ条件2	
ED局J(P)	(Max:32文字)	
控え矢板式/係船岸の終了(X)		

【新規作成(N)】 新規データを作成します。ファイル名は「無題」となります。

【開く(0)】 既存のデータを開きます。下図の「開く」ダイアログボックスが表示されますので、対象ファイルを選択し「開く」ボタンをクリックします。以前のバージョンのファイル(拡張子:wht, hy2, hy3, hy5)を読み込む場合は、下図の赤で囲んだボタンによりファイルの種類を変更します.

【上書き保存(S)】 現在編集中のデータを保存します。

【名前を付けて保存(A)】

新規作成したデータを初めて保存する場合に使用し ます。下図の「名前を付けて保存」ダイアログボック スが表示されますので、ファイル名を入力し「保存」ボタ ンをクリックします。

鋼矢板データの追加

当システムでは、鋼矢板データを保有していますが、それら以外の矢板で検討する場合、ここで任意の鋼矢板データとして追加登録します。 追加した鋼矢板データは、検討矢板の選択候補として一覧表に表示されます。

<u>鋼矢板データの追加画面</u>

No	矢板名称	断面二次 モーバント(cm4/m)	断面係数 (cm3/m)	矢板の幅(mm)
1	追加矢板1	31900	2060	600
2	追加矢板2	28700	1850	600
3	追加矢板3	24200	1560	600

[矢板名称]

追加する綱矢板の名称を入力します。

[断面二次モーメント(cm⁴/m)]

追加する綱矢板のm当たりの断面二次モーメントを入力します。

[断面係数(cm³/m)]

追加する綱矢板のm当たりの断面係数を入力します。

[矢板の幅(mm)]

追加する綱矢板の幅を入力します。

[断面積(cm²/m)]

追加する綱矢板のm当たりの断面積を入力します。

鋼矢板の追加画面には、それぞれ「データのインポート」ボタンがあります。このボ タンを押し、既存データのデータをインポートする事が可能です。

PC矢板データの追加

当システムでは、38種のPC矢板データを保有していますが、全てJIS及び、J ISに準拠したPC矢板です。それら以外のJIS矢板あるいは、港湾用PC矢板で 検討する場合、ここで任意のPC矢板データとして追加登録します。 追加したPC矢板データは、検討矢板の選択候補として一覧表に表示されます。

No	矢板名称	断面二次 モーメント(cm4/m)	断面係数 (cm3/m)	種別	ひび割れ モーメント&N・m/m)	断面
1	追加矢板1	85265	6201	JIS矢板	38.000	
2	追加矢板2	111600	7440	JIS矢板	54.000	
3	追加矢板3	143232	8814	JIS矢板	72.000	
4	追加矢板4	158136	9302	JIS矢板	80.000	
5	追加矢板5	196242	10753	JIS矢板	100.000	
6	H-350	171440	9800	港湾矢板		
•	(

<u>PC矢板データの追加画面</u>

[矢板名称]

追加するPC矢板の名称を入力します。

[断面二次モーメント(cm⁴/m)]

追加するPC矢板のm当たりの断面二次モーメントを入力します。特に、港湾用P C矢板の場合は入力に注意してください。

[断面係数(cm³/m)]

追加するPC矢板のm当たりの断面係数を入力します。特に、港湾用PC矢板の場 合は入力に注意してください。

[種別]

入力するPC矢板の種別を「JIS矢板」もしくは「港湾矢板」から選択します。 [ひび割れモーメント(kN·m/m)]

JIS矢板の場合、m当たりの常時のひび割れモーメントを入力します。

[断面耐力(曲げ)使用限界状態(kN·m/m)]

港湾用PC矢板の場合、m当たりの断面耐力を入力します。ここで入力した値が常時の検討に用いられます。

[断面耐力(曲げ)終局限界状態(kN·m/m)]

港湾用PC矢板の場合、m当たりの断面耐力を入力します。ここで入力した値が異 常時の検討に用いられます。

[矢板の幅(mm)]

追加するPC矢板の幅を入力します。

[断面積(cm²/m)]

追加するPC矢板のm当たりの断面積を入力します。

PC矢板データの追加画面には、それぞれ「データのインポート」ボタンがあります。 このボタンを押し、既存データのデータをインポートする事が可能です。

腹起しデータの追加

当システムでは、腹起しデータとして16種の溝形鋼データを保有していますが、それ ら以外で腹起し材の検討を行う場合、ここで任意の腹起しデータとして追加登録し ます。

追加した腹起しデータは、検討腹起し材の選択候補として一覧表に表示されます。また、ここで指定した腹起し材の腐食は腐食しろでは考慮しませんので、腐食後を検討 する場合は、腐食後の断面性能を設定して下さい。

<u>腹起しデータの追加画面</u>

No	腹起し名称	断面二次 モーメント(cm4)	▲ 断面係数(cm3)

[腹起し名称]

追加する腹起し材の名称を入力します。

[断面二次モーメント(cm⁴)]

追加する腹起し材の断面二次モーメントを入力します。

[断面係数(cm³)]

追加する腹起し材の断面係数を入力します。

※ 通常、溝形鋼の場合、応力照査時に断面係数を2倍して検討を行いますが、ここ で設定したデータについては、設定された値をそのまま断面性能として使用し ますので、ご注意ください。

腹起しデータの追加画面には、それぞれ「データのインポート」ボタンがあります。 このボタンを押し、既存データのデータをインポートする事が可能です。

部分係数の追加

当システムでは、構造物の性能照査をレベル1信頼性設計法に基づく方法(部分係数を用いた設計用値による性能照査式)により行うことが可能となっています。ここでは、その場合に使用する部分係数を入力します。

前面矢板に関する部分係数を部分係数1で、タイ材・腹おこし材に関するものを部 分係数2で、控え工に関するものを部分係数3で入力します。

部分係数		
部分係数1	部分係数2	部分係数3
	BP71株数と アースサポート法 限入れ長用 が続状態 072 109 1.11 100 1.00	↓ 算用
データのインホート データのエクスホート)K キャンセル

<u>部分係数1の追加画面</u>

<u>部分係数2の追加画面</u>

部分係数		—
部分係数1	部分係数2	部分係数3
部分係数1 タイ材 永続状態 変動状態 抵抗項(γR) 129 100 調整係数(m) 100 167 腹おこし材 水続状態 変動状態 抵抗項(γR) 100 100 1100 小続状態 変動状態 拡抗項(γR) 100 前重項(γS) 100 調整係数(m) 1.67	部分係数2	部分係数3
	0	K 1 10/201/

<u>部分係数3の追加画面</u>

部分係数		
部分係数1	部分係数2	部分係数3
控え矢板・直杭 - 永続状態 変動状態 抵抗項(Y R) 1.00 11.00 荷重項(Y S) 1.00 11.00 調整係数(m) 1.67 1.12	控元版 永続状態 変動状態 抵抗項(γ R) 11.00 11.00 简重項(γ S) 11.00 11.00 調整係数(m) 2.50 2.00	控え組杭 永続状態 変動状態 抵抗項(γ R) 1.00 1.00 荷重項(γ S) 1.00 1.00 調整係数(m) 1.67 1.12
控え組杭 支持力 永葆状態 引抜杭 押込杭 推抗項(γ R) 1.00 荷重項(γ S) 1.00 同整係数(m) 3.00 2.50 自の周面摩擦 m ^{···} ア S(Rak+Rnf,max) ア S(Rak+Rnf,max) Y RRpk 抵抗項(γ R) 1.00 荷重項(γ S) 1.00 同整係数(m) 120	変動状態 引抜杭 押込杭 1.00 1.00 1.00 1.00 1.00 1.00 2.50 1.50 2.50 1.50 γ S[(Rak+Rnf,max)/Ae] γ R σ fk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
データのインホペート データのエクスホペート	0	K キャンセル

部分係数データの追加画面には、それぞれ「データのインポート」ボタンがありま す。このボタンを押し、既存データの部分係数データをインポートする事が可能で す。

「データのエクスポート」ボタンを押し、現在設定されている部分係数をファイル 名をつけて保存することが可能となっています。

※ 基準書には、負の周面摩擦の照査式が明確には提示されていません。そのため、 本システムでは、許容応力度法の結果と同様となるように式を変形して用いて おります。ここでは、その時に使用する部分係数を初期値として設定していま す。

新規データ作成時に入力する部分係数の初期値はシステムフォルダ内の「新規・hyg」ファイルを変更することにより修正可能となっています。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.1099~1112

検討モードの切り替え

本システムでは、港湾・漁港モードと河川モードとを切り替えて使用することができ ます。インストール直後は、港湾・漁港モードが設定されていますので、ご使用に応 じて適宜変更してください。一度設定しますと、次回起動時は、最後に設定したモー ドかあるいは、最後に読み込んだデータのモードが有効となります。尚、モードの違 いによる、データ入力項目の違いを以下に示しますので、参考にして下さい。

	港湾・漁港モード	河川モード
照査方法	部分係数法·許容応力度法	許容応力度法
<u>設計基準</u>	設定可	設定不可
設計震度	係数による計算設定可	直接入力のみ設定可
<u>見かけの震度</u>	荒井・横井の提案式選択可	荒井・横井の提案式選択不可
<u>腐食</u>	腐食速度と耐用年数から計算	腐食しろ直接入力
土の水中の有効単位体積重量	飽和単位体積重量-10	湿潤単位体積重量-9 ※
	仮想海底面	仮想地盤面
帳票の表現	設計海底面	設計河床面
	潮位	水位

※参照:『道路橋示方書・同解説 I共通編 平成29年11月』P.119

※参照:『道路土工 仮設構造物工指針 平成11年3月』P.29

3-6. よくあるご質問の確認を行う

インターネットに接続されている環境であれば、次のメニューを選択することにより、最 新バージョンのチェックを行うことができるようになっています。「ヘルプ」-「よくあ るご質問(Q)」を選択して下さい。

🐻 控え矢板式係船岸6 Ver.1.1.2 - 無題	
ファイル(F) オブション(O) データ入力(I) 計算(C)	^J⊬7 [°] (H)
	操作説明 書 (J)
	商品概説書(k)
基本条件 地震時 前面矢板 外 腹材 1	よくある質問(Q)
設計条件1 設計条件2 高	^゙ージョン情報(A)
業務名称 未定義	ライセンス認証ユーザーページ(W)
設計基準	更新履歴の確認(R)
● 港湾基準	最新バージョンの確認(U)
C 漁港基準	✓ 起動時に最新バージョンをチェック(V)

Webブラウザを起動し、よくあるご質問(FAQ)が表示されます。

▼♪ 翻アライズソリューション	HOME 製品情報 サポート お問合せ 会社概要 おためし
よくあるご質問(FAQ) ?	
控え矢板式係船岸6	

3-7. ライセンス認証ユーザーページ

Webブラウザを介してライセンス認証ユーザーページに遷移します。ユーザー情報の変更 やライセンス情報の確認、現在利用中ユーザーの確認等が行えます。「ヘルプ」-「ライ センス認証ユーザーページ(W)」を選択してください。

🛅 控え矢板式係船岸6 Ver.1.1.2 - 無題	
ファイル(F) オブション(O) データ入力(I) 計算(C)	ヘルプ [*] (H)
	操作説明書(J)
	商品概説書(k)
基本条件 地震時 前面矢板 好 腹材 1	よくある質問(Q)
設計条件1 設計条件2 高	^´−ジョン情報(A)
業務名称未定義	ライセンス認証ユーザーページ(W)
┌設計基準	更新履歴の確認(R)
☞ 港湾基準	最新バージョンの確認(U)
C 漁港基準	✓ 起動時に最新パージョンをチェック(V)

ライセンス超過の際、ライセンスを確保している利用者の情報を知ることができます。 詳しくはライセンス認証ユーザーページ説明書をご覧下さい。

AEC-LICENSE	インターネットによるライセンス認証ユーザーページ	*
お知らせ	USB鍵を必要としないライセンス認証システムです。ユーザーページには以下の機能があります。	
	・ ユーザー情報の変更	
	 ユーザーID・パスワードの変更 	
	 ライゼンス情報の確認 現在利用中ユーザーの確認 	
	 お問い合わせフォーム 	
	ライセンス認証ユーザーページ説明書	
	ユーザーページヘログイン	
	ユーザーID パスワード ログイン	
	※ブラウザのCookie機能は必ず有効にしてください。	+
	(株)アライズソリューシ	/aン

<u>3-8.更新履歴の確認</u>

インターネットに接続されている環境であれば、次のメニューを選択することにより、最 新バージョンのチェックを行うことができるようになっています。「ヘルプ」-「更新履 歴の確認(R)」を選択して下さい。

🐻 控え矢板式係船岸6 Ver.1.1.2 - 無題		
ファイル(F) オブション(O) データ入力(I) 計算(C)	^J⊮7°	(H)
□☞∎ ፼悪⊜ ?		操作説明書(J)
		商品概説書(k)
基本条件 地震時 前面矢板 外 腹材 自		よくある質問(Q)
設計条件1 設計条件2 高		<i>バ−シ</i> ゙ョン情報(A)
業務名称未定義		ライセンス認証ユーザーページ(W)
		更新履歴の確認(R)
 ● 港湾基準 		最新バージョンの確認(U)
○ 漁港基準	\checkmark	起動時に最新パージョンをチェック(V)

Webブラウザを起動し、更新履歴及び最新版ダウンロードリンクが表示されます。

▼♪ 翻アライズソリューション	HOME	製品情報	サポート	お問合せ	会社概要	おためし	
/							ì
控え矢板式	「係船」	≢6					
最新版ダウンロ	ードはこき	55					
				🕕 動作環	境 (OS) に	ついて	

3-9. 直ちに最新バージョンのチェックを行う

インターネットに接続されている環境であれば、次のメニューを選択することにより、最新バージョンのチェックを行うことができるようになっています。「ヘルプ」-「最新バージョンの確認(U)」を選択してください。

🐻 控え矢板式係船岸6 Ver.1.1.2 - 無題	
ファイル(F) オブション(O) データ入力(I) 計算(C)	√µ7[°] (H)
D 🗳 🖬 🧮 🏼 🖨 🤶	操作説明書(J)
	商品概説書(k)
基本条件 地震時 前面矢板 外·腹材 1	よくある質問(Q)
設計条件1 設計条件2 高	バージョン情報(A)
業務名称未定義	ライセンス認証ユーザーページ(W)
	更新履歴の確認(R)
● 港湾基準	最新バージョンの確認(U)
○ 漁港基準	✓ 起動時に最新パージョンをチェック(V)

リビジョンアップ/バージョンアップの有無を確認し、「お知らせ」ダイアログを表示します。「自動更新」はセットアッププログラムのダウンロード〜実行/更新までを自動的に行います。「手動更新」はWebブラウザを起動し、セットアッププログラムのダウンロードサイトに遷移します。ダウンロード〜実行/更新までを手動で行って下さい。正常終了すれば、更新されたプログラムが自動的に起動します。

✓ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX 1	.X.Xのお知らせ		×
更新日	Version	製品に関するお知らせ		
20XX/YY/ZZ	1.0.6	更新履歴内容その7	未更新	
20XX/YY/ZZ	1.0.5	更新履歴内容その6	更新済	
20XX/YY/ZZ	1.0.4	更新履歴内容その5	更新済	
20XX/YY/ZZ	1.0.3	更新履歴内容その4	更新済	
20XX/YY/ZZ	1.0.2	更新履歴内容その3	更新済	
20XX/YY/ZZ	1.0.1	更新履歴内容その2	更新済	
20XX/YY/ZZ	1.0.0	更新履歴内容その1	更新済	
更新日		アライズンリューションからのお知らせ		
2020/04/27 新型コロナウイルス感染症拡大による当社製品サポート体制変更のお知らせ。				
2020/01/06	2020/01/06 FAQをリニューアルいたしました。			
2019/05/09 新製品『係留枕設計計算』を発売いたしました。				
2019/05/09	新製品『二	重矢板式防波堤』を発売いたしました。		
(#1) 775 (5°) 10	21-21			
(4本) アライスンリュー https://www.aec-s	soft.co.jp/	自動更新 手動更新	閉じる [Esc]	

3-10. 起動時に最新バージョンの自動チェックを行う

インターネットに接続されている環境であれば、プログラム起動時にインターネットを 経由して最新バージョンのチェックを行うことができるようになっています。「ヘルプ」ー 「起動時に最新バージョンをチェック(V)」にチェックをつけてください。次回起動時か ら有効となります。

🐻 控え矢板式係船岸6 Ver.1.1.2 - 無題	
ファイル(F) オブション(O) データ入力(I) 計算(C)	<>√ν7[°] (H)
	操作説明書(J)
	商品概説書(k)
基本条件 地震時 前面矢板 外小腹材 1	よくある質問(Q)
設計条件1 設計条件2 高	パージョン情報(A)
業務名称 未定義	ライセンス認証ユーザーページ(W)
設計基準	更新履歴の確認(R)
● 港湾基準	最新バージョンの確認(U)
C 漁港基準	✓ 起動時に最新バージョンをチェック(∨)

チェック機能を有効とした場合、未更新プログラムの有無に関わらず「お知らせ」ダイア ログを表示します。チェックが無い場合は未更新のプログラムがある場合に限り「お知 らせダイアログ」を表示します。「自動更新」はセットアッププログラムのダウンロード 〜実行/更新までを自動的に行います。「手動更新」はWebブラウザを起動し、セットア ッププログラムのダウンロードサイトに遷移します。ダウンロード〜実行/更新の処理 を手動で行ってください。正常終了すれば、更新されたプログラムが自動的に起動しま す。

更新日	Version	製品に関するお知らせ	更新
0XX/YY/ZZ	1.0.6	更新履歴内容その7	未更新
0XX/YY/ZZ	1.0.5	更新履歴内容その6	更新済
0XX/YY/ZZ	1.0.4	更新履歴内容その5	更新済
0XX/YY/ZZ	1.0.3	更新履歴内容その4	更新済
0XX/YY/ZZ	1.0.2	更新履歴内容その3	更新済
0XX/YY/ZZ	1.0.1	更新履歴内容その2	更新済
0XX/YY/ZZ	1.0.0	更新履歴内容その1	更新済
更新日		アライズソリューションからのお知らせ	
020/04/27	新型コロナク	フイルス感染症拡大による当社製品サポート体制変更のお知らせ。	
2020/01/06 FAQをリニューアルいたしました。			
2019/05/09 新製品の係留枕設計計算Iを発売いたしました。			
019/05/09	新製品『二	重矢板式防波堤Iを発売いたしました。	

4-1. 基本条件

設計条件1,2(業務名称、設計基準、計算方法、検討種別など)、高さ条件1,2(潮 位、各種標高など)を指定します。

基本条件の設定画面は、4タブ(画面)の構成となります。画面切り替えはタブ(設計条件1、設 <u>計条件2、高さ条件1</u>、高さ条件2【<u>控え矢板・直杭/控え版</u>/<u>控え組杭</u>/<u>グラウンドアンカー</u> <u>工法</u>】)をクリックします。

第1タブ(設計条件1)

🚮 控え矢板式係船岸6 Ver.1.0.0 - サンプルデータ港湾事例集H30	
ファイル(F) オプション(O) データ入力(I) 計算(C) ヘルプ(H)	
D D	<mark>港湾·漁港</mark>
業務名称 「サンブルデータ (Max 82文字) 設計基準 ・ 前面矢板根入れ部の計算方法 ・ 漁港基準 「リーアースサホート法 ※本項目を切替えた場合」 ・ 漁港基準 ・ 部分係数を考慮した検討 ・ たわみ曲線法 ・ 検討する ・ ・ 物質上のみ ・ ・ ・ 転換の後期(部分係数) ・ ・ 「 砂質上のみ ・ ・ ・ 転換の後期(部) ・ ・ 「 砂酸(本) ・ ・ 「 小 ・ ・ ・ た ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
	//

[業務名称]

業務名称を入力します。

[設計基準]

港湾・漁港モードの場合、「港湾基準」、「漁港基準」から選択します。選択した基 準により入力や選択できるデータ項目が切り替わります。河川モードの場合、本項目 は入力不可となります。

尚、「漁港基準」で(漁港・漁場の施設の設計参考図書2015年版)から性能設計が導入されましたが、性能照査手法として照査アプローチB(許容応力度法)が採用されていますので、システムでもそのように取り扱っています。

[部分係数を考慮した検討]

H30年港湾基準に準拠した計算を行う場合、「検討する」を選択します(以下、部分 係数法とよぶ)。H11年以前の港湾基準に準拠した計算を行う場合は、「検討しない」 を選択します(以下、許容応力度法とよぶ)。河川モードおよび、「設計基準」が「漁 港基準」の場合、本項目は入力不可となります。

[地盤の種別(部分係数)]

土層構成から、「砂質土地盤」か「粘性土が含まれる地盤」を選択します。これにより、対象となる前面矢板用の部分係数を決定します。尚、H30年港湾基準には、「粘 性土が含まれる地盤」とは、地表面から根入れ下端までに一部でも粘性土層が存在す る地盤とあります。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.10996

引き続き、部分係数ボタンを押すことにより、部分係数の入力・確認が可能です。「オ プション」-「<u>部分係数の追加</u>」により、入力することも可能です。

河川モードおよび、「設計基準」が「漁港基準」の場合、本項目は入力不可となりま す。

[検討条件]

検討項目を設定します。尚、常時については、無条件に検討します。船舶のけん引力 作用時の検討をチェックした場合、「1箇所の係船柱に作用するけん引力(kN)」及 び、「けん引力を分担するタイ材本数(本)」に値を入力します。

設計基準が「漁港基準」の場合のみ、津波引き波時の検討が可能となっています。

参照:『漁港・漁場の施設の設計参考図書 2015年』P.567

[前面矢板根入れ部の計算方法]

前面矢板の根入れ部の計算方法を「フリーアースサポート法」、「たわみ曲線法」、「ロウの 方法」の中から選択します. フリーアースサポート法の場合は、「前面矢板」-「モーメント を計算する範囲」で設計海底面位置と仮想海底面位置の選択が可能です。本スイッチ の切り替えを行った場合、そちらのスイッチも確認してください。

尚、設計基準が漁港基準の場合か、あるいは検討モードが河川モードの場合は、「ロ ウの方法」は選択不可となります。

[控えエの形式]

控え工の形式を「控え矢板・直杭」、「控え版」、「控え組杭」、「グラウンドアン カーエ法」の中から選択します. この条件により高さ条件2タブの項目が切り替わ ります。

尚、「グラウンドアンカーエ法」は許容応力度法でのみ選択可能です。

[土圧強度の設定方法]

土圧強度の設定方法を指定します。「土圧計算により算定」、「入力値により設定」 を選択してください。

[丸め方法]

計算値の丸め方法を選択します。一般に精度が良いとされているのは、五捨五入です が、電卓などで計算した場合は通常四捨五入となります。

- 五捨五入(JIS Z8401 規則A)
- ・ 四捨五入(JIS Z8401 規則B)

第2タブ(設計条件2)

📊 控え矢板式係船岸6 Ver.1.0.0 - サンプルデータ港湾事例集H30	
ファイル(F) オプション(O) データ入力(I) 計算(C) ヘルプ(H)	
□ □ □ □ □ □ □ □ □ □ □ □	港湾· 漁港
上載荷重(kN/m2) (▶ Pa=∑ γh+w-2cのみで計算 主働側 受働側 常時 30.00 0.00 地震時 15.00 0.00 違波時 15.00 0.00 水の単位体積重量(kN/m3) 10.10	

[δ:壁面摩擦角(度)]

土圧・崩壊角計算に用いる壁面摩擦角を前面矢板用・控え工用について入力します。 常時・地震時及び、主働側・受働側について指定します。

[上載荷重]

常時・地震時・津波時の上載荷重を入力します。尚、津波時の場合は地震時における 上載荷重とされています。

参照:『漁港・漁場の施設の設計参考図書 2015年』P.567

[水の単位体積重量]

水の単位体積重量を入力します。

[粘性土崩壊角既定值]

粘性土崩壊角の既定値を入力します。前面矢板と控え工との間の距離の算出時に使 用する崩壊角の計算で、常時(主働側・受働側)、地震時(受働側)など基準書等に 算出方法が記載されていない場合は必須です。地震時粘性土崩壊角算出式のルート の中身が0以下になった場合に便宜上使用します。負の値となった場合の対処法と して、次の記述があります。

『Q&A 構造物設計事例集』より抜粋 √内がマイナスになった場合は、物理的に意味がないので、地盤改良でcを大きくする か、γを小さくすることで対応する必要があります。

- ※ 本項目の値が0の場合、プログラムの実行途中でエラーメッセージが表示され ます。何らかの値を必ず入力してください。
- ※ 基準書等に算出方法が記載されていないものについては、45度が良く使用されています。崩壊角算出式のルート内が負の値となる場合については、明確な記述はありません。

[粘性土土圧の計算方法(常時)]

常時の粘性土の主働土圧を計算する場合に使用する計算式を以下の2つの中から指 定して下さい。

$$p_{a} = \Sigma \gamma h + w - 2c \quad (\overrightarrow{\mathbb{R}} - 1)$$
$$p_{a} = Kc(\Sigma \gamma h + w) \quad (\overrightarrow{\mathbb{R}} - 2)$$

- ① (式-1)と(式-2)を比較し、構造物に危険となる土圧分布をとる
- ② (式-1)のみで土圧を計算する
- ③ (式-2)のみで土圧を計算する
- ※ (式-1)を使用した場合に生じる負の土圧領域は考慮せず、正の土圧が発生する 深さまでは土圧を0とします.

港湾基準では、通常②を選択します。 参照:『港湾の施設の技術上の基準・同解説(上)平成30年5月』P.353 漁港基準では、通常①を選択します。 参照:『漁港・漁場の施設の設計参考図書 2015年』P.152

[圧密平衡係数(Kc)]

既出の粘性土土圧計算に用いる圧密平衡係数を指定します。通常は0.5を用います。

参照:『漁港・漁場の施設の設計参考図書 2015年』P.152

第3タブ(高さ条件1)

F) オプション(O) データ入力(I) 計	†算(C) ∿ルプ(H)				
		1		4	2010-2010
条件 地震時 前面矢板 外腹	材 控え工 腐	食土層	任意土圧他	外力 模式図	記号
設計条件1 設計条件2	高さ条件1	高さ条件	2		
設計潮位(m)					
H. W. L.	1.50	_			
L. W. L.	0.00				
- 残留水位(m)					
• 2/3(HWL-LWL)+LWL					
0 1.0(H.W.L-L.W.L)+L.W.L					
○ 入力値を使用	0.00				
-津波引き波時					
前面水位(m)	0.00				
残留水位(m)	3.00				
-各種高さ条件(m)					
前面海底面高[常時]	-12.60	_			
前面海底面高[地震時]	-12.60				
前面海底面高[津波時]	-12.60				
海底面傾斜角(度)	0.0				
粘着力基準高(m)	0.00				
計算範囲下限高(m)	-50.00				

[設計潮位]

各潮位を入力します。残留水位を計算して算出する場合、本項目の値を使用します。

[残留水位]

残留水位の入力方法を指定します。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.358 参照:『漁港・漁場の施設の設計参考図書 2015年』P.155

[津波引き波時:前面水位(m)]

津波引き波時に最も低くなった時の水位を入力します。

参照:『漁港・漁場の施設の設計参考図書 2015年』P.567

[津波引き波時:背面水位(m)]

残留水位が背後地盤と同等となる状態を想定して入力します。

参照:『漁港・漁場の施設の設計参考図書 2015年』P.567

[前面海底面高]

前面の海底面高を入力します。前面海底面高は、常時・地震時・津波時で高さを変更 することが可能です。受働側土層の第1層目の高さは常時・地震時・津波時の中で最 も高い位置と一致させてください。 [海底面傾斜角]

海底面傾斜角を入力します。傾斜がない場合は、0.0です。土圧の計算のβに使用し ます。

[粘着力基準高]

粘着基準線の高さを指定します。各粘土層の粘着力の算出に使用します。

[計算範囲下限高]

本システムは、土層入力が各層毎の上限値を入力するようになっていますので最終 層の下限値の高さを入力します。土圧の計算は、この位置まで行います。

第4タブ(高さ条件2-控え矢板・直杭)

	データ港湾事例集H30 :) ヘルプ(H) 超入工 席食 土層 任意士圧 他外力 模式図	×
設計条件1 設計条件2 高 前面矢板 a:上部工天端高(m) b:矢板天端高(m) c:タイ材取り付け方高(m) ビタイ材取り付け方高(m) 「控え工 ・ タイ材体料角を固定 ・ タイ材取り付け位置固定 は、控え工の天端からタイ材までの長さ(・ タイ材取り付け高(m) 「横断面で見た角度] f:タイ材取り付け高(m)	idland idland idland idland illion illion m) illion illion illion illion illion	e f f

[前面矢板-上部工天端高]

上部工位置の天端位置を入力します。上部工天端高と主働側土層の第1層目の高さ は必ずしも同じである必要はありません。

[前面矢板-矢板天端高]

矢板の天端位置を入力します。根入れ長の算出時に使用します。

[前面矢板ータイ材取り付け高]

前面矢板に取り付けたタイ材位置を入力します。

[控えエータイ材取り付け条件]

前面矢板と控え工の間の距離を計算する場合の条件として、「タイ材傾斜角を固定」 「タイ材取り付け位置固定」のどちらかを選択します。「タイ材傾斜角を固定」を選 択した場合、角度を固定しているため、前面矢板と控え工の間の距離に応じてタイ材 取り付け位置の深度が変化します。「タイ材取り付け位置固定」を指定した場合、取 り付け位置を固定しているため、前面矢板と控え工の間の距離に応じて傾斜角が変 化します。

[控えエー控えエの天端からタイ材までの長さ]

控え工の天端から、タイ材を取り付けた位置までの長さを入力します。

[控えエータイ材の傾斜角度(横断面から見た角度)]

「タイ材傾斜角を固定」を選択した場合に入力可能となります。横断面から見たタイ 材の傾斜角θを入力します。角度は、図のようになります。

[控えエータイ材取り付け高(m)]

「タイ材取り付け位置固定」を選択した場合に入力可能となります。控えエに取付け たタイ材位置を入力します。

第4タブ(高さ条件2-控え版)

7744(F) 17*52(0) デーラ入力(1) 計算(C) AUF*(H) 1	10 控え矢板式係船岸6 Ver.1.0.0 - サンス	プルデータ漁港・漁場構設	告物設計計算例H16(砂質土地盤)	
公式 公式 第 第 第 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 1 <th1< th=""></th1<></th1<>	ファイル(F) オプション(O) データ入力(I) 計	算(C) ヘルプ(H)		
e:控之版下端高(m) 0.70 t:9/付和取付け高(m) -0.50	アイル(F) オブ*ション(O) デ・タ入力(I) 計 アイル(F) オブ*ション(O) デ・タ入力(I) 計 回 回 回 回 ② 回 回 回 ③ 図 回 回 ③ 図 回 回 ③ 図 回 回 ③ 図 回 回 ③ 図 回 回 ③ 図 回 回 ③ 図 回 回 ③ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 図 回 ○ 1 回 ○ 図 回 ○ 1 回 ○	算(C) 小儿 ² (H) 1 控入工 篇食 高达条件1 高之 12.70 2.00 120 120	<u>土</u> 層 任意土圧 他外力 模式図 注 層 日	港湾·漁港 加速 d f
	e:控之版下端高(m) f:匀(材取付け高(m)	0.70		

[前面矢板-上部工天端高]

上部工位置の天端位置を入力します。上部工天端高と主働側土層の第1層目の高さ は必ずしも同じである必要はありません。

[前面矢板-矢板天端高]

矢板の天端位置を入力します。根入れ長の算出時に使用します。

[前面矢板ータイ材取り付け高]

前面矢板に取り付けたタイ材位置を入力します。

[控えエー控え版天端高]

控え版の天端高を入力します。

[控えエー控え版下端高]

控え版の下端高を入力します。

[控えエータイ材取り付け高]

控え版に取付けたタイ材位置を入力します。

第4タブ(高さ条件2-控え組杭)

■ 控え矢板式係船岸6 Ver.1.0.0 - サンプルデータ港湾事例集H11	- • •
ファイル(F) オプション(O) データ入力(I) 計算(C) ヘルプ(H)	
■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	港湾・漁港
設計条件1 設計条件2 高さ条件1 高さ条件2	
□ 前面矢板	
a:上部工天端高(m) 3.00 2	
b:矢板天端高(m) 150	f ////
c:タイ材取り付け高(m) 1.00 b	
	7h
e /e /	
d:上部工天端高(m) [2.00	
e:上部工下端高(m) 0.50	
f:上部工幅(m) 2.00	
g:\$/材取付け高(m) 1.00	
h:控え工の天端からタイ材までの長さ(m) 0.50	
	· · ·

[前面矢板一上部工天端高]

上部工位置の天端位置を入力します。上部工天端高と主働側土層の第1層目の高さ は必ずしも同じである必要はありません。

[前面矢板-矢板天端高]

矢板の天端位置を入力します。根入れ長の算出時に使用します。

[前面矢板ータイ材取り付け高]

前面矢板に取り付けたタイ材位置を入力します。

[控えエー上部エ天端高]

控え組杭の上部エ天端高を入力します。

[控えエー上部エ下端高]

控え組杭の上部エ下端高を入力します。

[控えエー上部エ幅]

控え組杭の上部工幅を入力します。

[控えエータイ材取付け高]

控え組杭に取付けたタイ材位置を入力します。

[控えエー控えエ天端からタイ材までの長さ] 控え組杭の天端からタイ材取付け位置までの長さを入力します。

第4タブ(高さ条件2ーグラウンドアンカーエ法)

77(W(F) オプ [*] ション(O) デ [*] ータ入力(I) 計算(C) ヘルフ [*] (H)	
基本条件 地震時前面 医板树小腹树 控え工 腐食 土層 任意土庄 他外力 模式図	港湾・漁港
設計条件1 設計条件2 高さ条件1 高さ条件2	
a:L部工天端高(m) 300 a	
b: 矢板天端高(m) 1.50 // // // // // // // // // // // // //	
c:タイ材取り付け高(m) 1.00 b	
d	
d:(解})角度(度)	
[横断面で見た角度]	
	11.

[前面矢板-上部工天端高]

上部工位置の天端位置を入力します。上部工天端高と主働側土層の第1層目の高さ は必ずしも同じである必要はありません。

[前面矢板-矢板天端高]

矢板の天端位置を入力します。根入れ長の算出時に使用します。

[前面矢板ータイ材取り付け高]

前面矢板に取り付けたアンカーの位置を入力します。

[アンカーー傾斜角度(横断面から見た角度)]

横断面から見たアンカーの傾斜角θを入力します。角度は、図のようになります。

4-2. 地震時条件

地震時条件(設計震度、見かけの震度など)を指定します。 地震時の設定画面は、2タブ(画面)の構成となります。画面切り替えはタブ(<u>地震時1</u>、<u>地震時</u> <u>2</u>)をクリックします。

第1タブ(地震時1)

2 控え矢板式係船岸6 Ver.1.0.0 - サンプルデータ港湾事例集H11	- • •
ファイル(F) オプション(O) データ入力(I) 計算(C) ヘルプ(H)	
	34.34 . 34.34
基本条件	1215 1812
地震時1 地震時2	
震度の桁数 小数点以下2桁 👤	
(區按八) - 地域別震度 地盤種別係数 重要度係数	
(*計算 0.13 1.20 1.20	
設計震度丸め方法 四捨五入or五捨五入 🗸	
見かけの震度	
○ 直接入力 0.00	
○ 一般式[γ /(γ-10)·k]	
光がりの展復れめ方法 四倍五人or五倍五人	

[震度の桁数]

設計震度・見かけの震度の小数点以下桁数を選択します。震度法を用いる場合、一般 に、小数点以下2桁を設定することが多いようです。

参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.262

参照:『漁港・漁場の施設の設計参考図書 2015年』P.160

[設計震度]

設計震度の入力方法を「直接入力」、「係数により計算」から選択します。設計基準 等により、次のような選択となります。

- ・ 漁港基準の場合、設計水平震度の「直接入力」が可能。
- 港湾基準一部分係数を考慮しない検討の場合、「直接入力」、「係数により計算」
 を選択可能。
- 港湾基準-部分係数を考慮する検討の場合、照査用設計震度の「直接入力」が可能。
- ・ 河川モードの場合、設計震度の「直接入力」が可能。

参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.262 参照:『漁港・漁場の施設の設計参考図書 2015年』P.160

(係数により計算する場合)

設計震度=地域別震度×地盤種別係数×重要度係数

[設計震度の丸め方法]

設計震度を係数から計算した場合の震度の丸め方法を選択します。通常は、①を選択 します。本項目は、許容応力度法の場合のみ設定可能です。

- ① 四捨五入or五捨五入(※設計条件の丸め方法に準ずる)
- ② 二捨三入・七捨八入

参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.262

[見かけの震度]

見かけの震度の入力方法を「直接入力」、「一般式(γ/(γ-10)・k)」、「二建の 提案式」、「荒井・横井の提案式」から選択します。「直接入力」を選択し、見かけの震度を 入力した場合、全土層に対してその見かけの震度が採用されます。 ※ 尚、河川モードの場合、「荒井・横井の提案式」は、選択不可となります。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.356

参照:『漁港・漁場の施設の設計参考図書 2015年』P.154

[動水圧作用SW]

矢板壁に動水圧を作用させることができます.港湾基準では、見かけの震度を「荒 井・横井の提案式」で計算する場合に作用させるようになっています。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.359

[見かけの震度の丸め方法]

見かけの震度の丸め方法を選択します。通常は、①を選択します。本項目は、港湾基 準一部分係数を考慮する検討の場合、設定不可となり四捨五入or五捨五入が適用さ れます。

- ① 四捨五入or五捨五入(※設計条件の丸め方法に準ずる)
- ② 二捨三入・七捨八入
第2タブ(地震時2)

[震度の取り扱い/R.W.L.位置]

地震時・主働土圧の残留水位位置の土圧強度を計算する場合に使用する震度を以下の2つの中から指定して下さい。

① 上側は空中震度、下側は見かけの震度を用いる

上下共に空中震度を使用する

通常、荒井・横井の提案式を用いた場合、水面下では見かけの震度を用います。した がって、通常①を選択します。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.357 参照:『漁港・漁場の施設の設計参考図書 2015年』P.155

[震度の取り扱い/L.W.L.位置]

地震時・受働土圧のL.W.L.位置の土圧強度を計算する場合に使用する震度を以下の2 つの中から指定して下さい。

- ① 上側は空中震度、下側は見かけの震度を用いる
- 上下共に空中震度を使用する

通常、荒井・横井の提案式を用いた場合、水面下では見かけの震度を用います。した がって、通常①を選択します。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.357 参照:『漁港・漁場の施設の設計参考図書 2015年』P.155

[地震時粘性土の取扱い/土圧強度式]

地震時・粘性土の主働土圧を計算する場合に使用する計算式を以下の2つの中から指 定して下さい。

$$(\vec{x} - 1)$$

$$p_{a1} = \frac{(\Sigma \gamma h + w) \sin(\zeta + \theta)}{\cos \theta \sin \zeta} - \frac{c}{\cos \zeta \sin \zeta}$$

$$\zeta = \tan^{-1} \sqrt{1 - \left(\frac{\Sigma \gamma h + 2w}{2c}\right)} \tan \theta$$

$$(\vec{x} - 2)$$

$$p_{a2} = Kc(\Sigma \gamma h + w)$$

- ① (式-1)と(式-2)を比較し、構造物に危険となる土圧分布をとる
- ② (式-1)のみで土圧を計算する
- ③ (式-2)のみで土圧を計算する

港湾基準では、通常②を選択します。 参照:『港湾の施設の技術上の基準・同解説(上)平成30年5月』P.356 漁港基準では、通常①を選択します。 参照:『漁港・漁場の施設の設計参考図書 2015年』P.153

ここで、上記式で土圧強度を求める場合に ぐの計算式内でルートの中身が負の値を 取る場合があります。その場合、次の4つの方法の中から計算方法を選択することが 可能です。

- 崩壊角既定値で計算
- 岡部式で計算
- 常時土圧式で計算
- Σγh+wで計算

※ 負の値となった場合の対処法として、次の記述があります。

『Q&A 構造物設計事例集』より抜粋

√内がマイナスになった場合は、物理的に意味がないので、地盤改良で c を大きくするか、 γ を小さくすることで対応する必要があります。

岡部式を用いて土圧強度を計算するを選択した場合、以下の式を用いて土圧強度を 計算します。

$$p_{a} = \frac{(\Sigma \gamma h + w)\sin(\alpha + \theta)}{\cos \theta \sin \alpha} - \frac{c}{\cos \alpha \sin \alpha}$$
$$2\alpha = 90^{\circ} - \mu$$
$$\mu = \tan^{-1} \frac{\overline{a}}{\sqrt{\overline{b}^{2} - \overline{a}^{2}}}$$
$$\overline{a} = \sin \theta$$
$$\overline{b} = \sin \theta + \frac{2c \bullet \cos \theta}{\Sigma \gamma h + w}$$

参照:『土圧係数図表』P.40

[受働崩壊角の計算に岡部式を用いる]

地震時受働崩壊角の計算に岡部式を用いるかどうかのスイッチです。受働土圧強度 の計算及び、前面矢板と控え工との距離の算定時に影響します。チェックボックスを チェックしなければ、基本条件画面-「粘性土」-「崩壊角既定値」で入力した角度 を使用します。

参照:『土圧係数図表』P.40

[地震時粘性土の取扱い/土圧計算方法]

地震時·粘性土の主働土圧を計算する場合の計算方法を以下の4つの中から指定して下さい。次の文献の解釈によります。設計事例集などに使用されている方法は、3の方法です。

参照:『港湾の施設の技術上の基準・同解説(上) 平成30年5月』P.356

(3) 海底面下における粘性土の地震時土圧を算出する場合、海底面においては見かけの震度を用いて土圧を求めるが、海底面下10m以下においては震度を0として土圧を求めることができる。ただし、海底面下10mにおける土圧が海底面における値より小さい場合には、海底面における値を用いるべきである。

参照:『漁港・漁場の施設の設計参考図書 2015年』P.154

(3) 海底面下における地震時の土圧の算定

海底面下における粘性土の地震時の土圧を算出する場合、海底面においては見かけの 震度k'を用いて土圧を求めるが、海底面下10m以下においては震度をゼロとして土圧を 求めてよい。ただし、海底面下10mにおける土圧が海底面における値より小さい場合には、 海底面における値を用いる。

- 1. 上・下共に見かけの震度を用いて土圧を計算する
- 2. 海底面~海底面-10m間の土圧強度を直線補間(土層下限値のみ補間で算出)
- 海底面~海底面-10m間の土圧強度を直線補間(土層上・下限値共に補間で算出)
- 4. 海底面~海底面-10m間の見かけの震度を直線補間
- ※ 上・下共に見かけの震度を用いる場合、海底面-10m以下の粘土層についてのみ、 見かけの震度を0として計算します。

次のような土層での主働土圧を計算する場合、上記の4つの計算方法での計算モデ ルを示します。

	DL
砂質土	
粘性土	
砂質土	DL-10.0m

《上・下共に見かけの震度を用いて土圧を計算する》

① 粘性土層での上限・下限それぞれの見かけの震度 k を算出します。

① ①で算定した k を用いて土圧強度を算定します。

《海底面~海底面-10m間の土圧強度を直線補間(土層下限値のみ補間で算出)》

① DL~DL-10.0m間の粘性土の上限位置はそのままで、下限値のみDL-10.0mとし、 その間を同一の粘性土として、見かけの震度kを計算します。計算したkiを 用いて土層上限位置の土圧強度を計算します。この時、計算に使用する粘着カ Cは実際の土層位置のCを用います。DL-10.0m位置の土圧強度はk2=0.0として 計算します。

② ①で計算した土圧強度P1、P2を元に直線補間を行い、粘性土の下限位置での土 圧強度P2を算出します。算出したP2がP1よりも小さかった場合、P1の値をP2の 値として採用するかどうかの選択が可能です。

《海底面~海底面-10m間の土圧強度を直線補間(土層上・下限値共に補間で算出)》

① DL~DL-10.0m間を同一の粘性土として見かけの震度 k を計算します。計算した k₁を用いてDL位置の土圧強度を計算します。この時、計算に使用する粘着力CはDL位置のCを用います。DL-10.0m位置の土圧強度は k₂=0.0として計算します。

② ①で計算した土圧強度P1、P2を元に直線補間を行い、実際の粘性土層の上限位置、下限位置での土圧強度P1、P2を算出します。算出したP1、P2がP1よりも小さかった場合、P1の値をP1、P2の値として採用するかどうかの選択が可能です。 DL

《海底面~海底面-10m間の見かけの震度を直線補間》

① 実際の粘性土層での上限・下限それぞれの見かけの震度 k を算出します。

② 算出した見かけの震度 k₁をDL位置の見かけの震度、DL-10m位置の見かけの震 度は0.0と仮定して直線補間を行い、実際の粘性土の上限位置、下限位置での 見かけの震度k'1、k'2を算出します。

③ ②で求めた見かけの震度 k[']1、 k[']2からそれぞれの土圧強度を算定します。同時に、DL位置では見かけの震度 k₁を用いて土圧強度 P_{DL}を計算します。この時、計算に使用する粘着力C及び ΣγhはDL位置での値を用います。算出したP'1、P'2がP_{DL}よりも小さかった場合、P_{DL}の値をP'1、P'2の値として採用するかどうかの選択が可能です。

[海底面以下にある粘土層の土圧採用値]

「(海底面~海底面-10m間)土層上限や海底面での土圧強度と比較」を有効とした 場合、[地震時粘性土の取扱い/土圧計算方法]の条件により、次のような比較を行 います。

- (「上・下共に見かけの震度を用いて土圧を計算する」及び、「海底面~海底面 -10m間の土圧強度を直線補間 (土層下限値のみ補間で算出)」の場合)
 - 土層上限と下限の土圧強度を比較し、下限値の土圧が小さくなる場合、下限 値に上限値を採用。

(「海底面~海底面-10m間の土圧強度を直線補間 (土層上・下限値共に補間で

算出)」及び、「海底面~海底面-10m間の見かけの震度を直線補間」の場合) 海底面と土層下限の土圧強度を比較し、下限値の土圧が小さくなる場合、下 限値に海底面の値を採用。

「(海底面-10m以深)土層上限の土圧強度と比較」を有効とした場合、次のような 比較を行います。

土層上限と下限の土圧強度を比較し、下限値の土圧が小さくなる場合、下限値に 上限値を採用。

前面矢板条件(矢板形式、応力度など)、矢板指定(鋼矢板、鋼管矢板、PC矢板など) を指定します。

矢板の設定画面は、4タブ(画面)の構成となります。画面切り替えはタブ(<u>前面矢板</u>、<u>矢板任意</u>、 <u>鋼管指定、PC矢板任意</u>)をクリックします。

第1タブ(前面矢板)

(F) オブション(O) データ入力(I) 計算(C) ヘル	7 [°] (H)		
÷ 🖬 📃 🎟 🖨 📍			
	工 席食 土層 任意土圧 絶外力	模式図	港湾
前面矢板	指定 PC矢板任意		
矢板形式 ○ レ形矢板 ○ Z形矢板 ○ ハット形矢板 ○ 矢板任意指定 ○ 鋼管矢板指定 ○ PC矢板(JS洋地品)[塩対] ○ PC矢板(JS洋地品)[塩対] ○ PC矢板(JS) ○ PC ○ PC ○ PC ○ PC ○ PC ○ PC ○ PC ○ PC	ヤング係数(kN/mm2) 0.0 ロウの方法 地盤反力係数(MN/m3) 28.0 Mmax少(材取付点反力修正用断面性能 で 腐食前 で 腐食前 で 腐食後 モーメントを計算する範囲	- 根入れ安全率 - フリーアースサポート法 - 砂質土 F=1.5 - 彩档土 F=1.2 常時 [0.0 地震時 [0.0 地震時 [0.0 地震時 [0.0	
☞ 上型 ☞ 普通型 ☞ 広幅型	上部工天端 ▼ ~ 該計海底面 ▼	根入れ長丸め単位(m) 0.5	
-材質 〇 SYW295, SKY400 ④ SYW390, SKY490 〇 SYW430	主働側・受働/開発度のつりあい位置 ▼	□ 根入れ深度(m) 0.00	<u>★</u> 孝(店)
- 矢板の許容応力度(N/mm2) - - - - - - 大阪の - - - - - - - - - -	常時 地震時 (0.000 (1.000 (1.000)	■17-2×27-算出し直の指定(No 深度(m) ▲ 置を基 度で指	☞「□□」― 『工天端位 準とした深 定します。

[矢板形式]

矢板の形式を指定します。本システムでは、内部に矢板データを保持しています。 「U形」、「Z形」、「ハット形」、「PC矢板(JIS準拠品)[塩対]」、「P C矢板(JIS)」等を指定した場合、システム内部の矢板データを使用し、トライ アル計算を行います。

「矢板任意指定」、「PC矢板任意指定」を選択した場合、第2、第4タブでシステム内部の矢板データに加えて、追加入力した任意矢板データの中から検討矢板を任 意に選択できます。

「鋼管矢板指定」を選択した場合、鋼管矢板形状を任意に指定できます。

尚、PC矢板で港湾用PC矢板を用いる場合は、システム内部に矢板データを保持していませんので、全て「オプション」-「<u>PC矢板データの追加</u>」により矢板データの入力を行う必要があります。

[U形矢板]

U形矢板を使用する場合、U形矢板の型を「L型」、「普通型」、「広幅型」から選 択します。

[材質]

鋼矢板、鋼管矢板を使用する場合、矢板の材質を指定します。 鋼矢板の場合は、SYW295・SYW390・SYW430(ただし、SYW430はハット形鋼矢板の場合のみ選択可能)、鋼管矢板の場合は、SKY400・SKY490から選択します。

※SYW430の許容応力度は、2018年8月現在基準書等には明示されていませんが、以下 の文献から、本システムでは降伏応力度の60%として計算し、安全側に丸めること で、次のように算出しています。

SYW430の許容応力度=430.0×0.6=258≒255 N/mm²

参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.317 2.3.2(2)

[矢板の許容応力度/降伏応力度(N/mm²)]

許容応力度法の場合は、常時・地震時の矢板の許容応力度。部分係数法の場合は、降 伏応力度を入力します。入力値が0.0の場合、指定した矢板の許容応力度/降伏応力 度を採用します。PC矢板の場合、応力度のチェックは許容応力度/降伏応力度では 行いませんので、この項目は入力不可となります。

[ヤング係数]

使用する矢板のヤング係数を入力します。入力値が0.0の場合以下の値を採用します。

鋼矢板・鋼管矢板 : E = 200kN/mm² PC矢板 : E = 35.0kN/mm²

[ロウの方法-地盤反力係数]

シミラリティナンバー(ω)を算出するための地盤反力係数(Ιト)を入力します.

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.1096~

[ロウの方法-Mmax、タイ材取付点反力修正用断面性能]

フリーアースサポート法により算出したMmax及び、タイ材取付け点反力をロウの方 法により補正します.その場合に使用する断面性能を腐食前か腐食後で指定します. 根入れ長照査には、腐食前の断面性能を無条件で使用します。

[モーメントを計算する範囲]

土圧・水圧によるモーメントを考える範囲を指定します。開始位置は、上部工天端位 置あるいは、タイ材取付け点位置から選択ができます。タイ材取付け点位置を指定し た場合、上部工天端~タイ材取り付け点位置までの荷重は無視します。終了位置は、 矢板の計算方法がフリーアースサポート法の場合に設計海底面あるいは、仮想海底 面から選択できます。たわみ曲線法あるいは、ロウの方法の場合、必ず設計海底面と なります。

[仮想海底面]

フリーアースサポート法で計算を行う場合でモーメントを計算する範囲が仮想海底 面までの場合、仮想海底面を計算により求めるかあるいは、任意の位置を入力し、そ の位置を仮想海底面とするかを選択できます。

[仮想海底面位置]

仮想海底面を入力値とした場合にここで入力します。

[根入れ安全率-フリーアースサポート法]

フリーアースサポート法で矢板を計算する場合の根入れ安全率です。本項目は、許容 応力度法で検討する場合にのみ有効となります。

矢板の計算方法がたわみ曲線法の場合、フリーアースサポート法との根入れの比較 を行うため入力が必要です。矢板の計算方法がロウの方法の場合、フリーアースサポ ート法で計算し、計算結果を補正する方法をとっていますので入力が必要です。

[根入れ安全率-たわみ曲線法]

たわみ曲線法で根入れ長を計算する場合の安全率を指定します。0.0なら1.2を採用 します。本項目は、許容応力度法で検討する場合にのみ有効となります。

[根入れ長丸め単位]

根入れ長を丸める単位をm単位で指定します。例えば、50cm単位で丸めるのであれば、0.5となります。

[根入れ深度(m)]

任意の根入れ深度を入力します。根入れ深度を入力する場合は、チェックボックスを チェックし、任意の根入れ深度を入力して下さい.入力された根入れ深度から矢板長 を計算します。

[曲げモーメント算出位置の指定(参考値)]

指定した任意の位置の曲げモーメントを参考値として印刷します。位置については、 上部工天端位置もしくはタイ材取り付け位置を基準とした深度で入力します。

第2タブ(矢板任意)

レ(F) オブション(O) データ入力(I)	計算(C) ヘルブ(H)				
F B B B S					
個 · · · · · · · · · · · · · · · · · · ·	 1 1	1 1 食 土層	任意土圧 他外力 模式図	<mark>港湾・</mark>	渔港
前面矢板 矢板任意	鋼管指定	PC矢板任意]	 	
選択 矢板名称	断面二次モーメント I(cm4/m)	断面係数 Z(cm3/m)			
SP-I	8740	874	^		
SP-II	16800	1340			
SP-IV	38600	2270			
SP-VL	63000	3150			
SP-VIL	86000	3820			
□ S P-Z25	38300	2510			
	55000	3200			
	69200	3800			
	83500	4550			
	13000	1000			
	56700	2700			
SP-10H	10500	902			
SP-25H	24400	1610			
✓ S P-45 H	45000	2450			
SP-50H	51100	2760			
SP-IA	4500	529	_		
SP-IA	10600	880			
SP-IIA	22800	1520			
SP-IVA	41600	2250			
	1/400	1340			
	4220	527			
10 Y S P-08	3090	880	*		

[矢板形式]が「矢板任意指定」の場合、矢板データの一覧表から検討対象の矢板を選択します。

この一覧表には、既存鋼矢板データと【オプション】メニューの【<u>鋼矢板データの追加</u>】で入 力した追加鋼矢板データが表示されています。

トライアル計算を行う順番は、指定した順ではなく指定した複数の矢板データの中で断 面が小さいものから計算していきます。

第3タブ(鋼管指定)

10 控え矢板式係船) ファイル(F) オプ・ション(C	岸6 Ver.1.0.0 - 1 O) データ入力(I)	ナンブルデータ港湾事例集H11 計算(C) ヘルプ(H)				
]]]]]]]]]]]]]]]]]]]]]	 調査 調査 調査 調査 調査 調査 二層 	任意土圧	 		<mark>港湾- 漁港</mark>
前面矢板	矢板任意	例管指定: PC失板任意]			
No 外行	径(mm) 厚さ(mn) 矢板の維手	維手の有 効間隔 (mm)	断面二次 モーメント(cm4/m)	断面係数 (cm3/m)	▲ 断面積(cm2/
1	1100.0 12	.0 二港湾型(L-T型) [L-75×75×9]		515000	9370	3
•						▼ ▶

[矢板形式]が「鋼管矢板指定」の場合、鋼管矢板形状を指定します。 矢板の継手の種類により、有効間隔を算出しますが、直接入力することも可能です。 腐食前の断面性能でカタログ値を使用する場合は、断面二次モーメント・断面係数・断面 積も入力してください。省略した場合、内部で計算します。 トライアル計算を行う順番は、指定した順で計算していきます。

第4タブ(PC矢板任意)

アイル(F) れず 32)(O) データ入力(I) 計算(C) 小ルア ●	📶 控え矢板式係船岸6 Ver.1.0.0 - サンプルデータ港湾事例集H11	
正式 正式	ファイル(F) オプション(O) データ入力(I) 計算(C) ヘルプ(H)	
建築件 推動 接換 建力 任意士臣 经为 模式図 建力 建力 建力 建力 使 通力		· · · · · ·
前面矢板 矢板名称 断面二次モージト (cm4/m) 断面孫数 Z(cm3/m) ※ 201 ※ SW-325-C50 111600 7440 ※ SW-325-C50 111800 7440 ※ SW-325-C50 11800 7440 ※ SW-325-C50 18188 3302 ※ SW-385 A-C50 198242 10753 SW-385 B-C50 198242 10773 SW-380 A-C50 241077 12863 SW-380 B-C50 241077 12863 SW-440 A-C50 344133 15643 SW-440 A-C50 476837 19467 SW-440 A-C50 476837 19467 SW-440 A-C50 611233 22826 SW-440 A-C50 611233 22826 SW-440 B-C50 476837 19467 SW-440 B-C50 476837 19467 SW-440 B-C50 476837 19467 SW-440 B-C50 89880 31053 SW-440 B-C50 938801 31053 SW-440 B-C50 938801 31053 SW-740-C50 1472833 38001 SW-740-C50 1472833 38001 SW-740-C50 247111 60577 SW180 18350 2044 SW180 23547 2616 SW180 23	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	港湾・漁港
$\exists tr.$ $\underline{Fup}(25) = \frac{50}{10}$ $\underline{Fup}(2m)$ $\underline{Fup}(2m)$ \checkmark $\underline{SW+235} = \frac{500}{10}$ 116007440 \checkmark $\underline{SW+300} = 500$ 1161007440 \checkmark $\underline{SW+300} = 500$ 1581363302 \checkmark $\underline{SW+300} = 550$ 15824210753 \subseteq $\underline{SW-385} = -550$ 19624210753 \subseteq $\underline{SW+380} = -550$ 24107712863 \subseteq $\underline{SW+380} = -550$ 24107712863 \subseteq $\underline{SW+440} = -550$ 47693719467 \subseteq $\underline{SW+440} = -550$ 61523322826 \subseteq $\underline{SW+540} = -550$ 93989031053 \subseteq $\underline{SW+740} = -550$ 147283338001 \subseteq $\underline{SW+740} = -550$ 244710160577 \subseteq $\underline{SW+740} = -550$ 244710160577 \subseteq $\underline{SW+180}$ 235472616 \subseteq $\underline{SW+180}$ 235472616 \subseteq $\underline{SW+180}$ 235472616 \subseteq $\underline{SW+225}$ 457224064	前面矢板 矢板任意 鋼管指定 PC矢板任意	
V SW-226-C50 9225 9201 V SW-300-C50 111600 7440 V SW-320-C50 14222 8814 V SW-340-C50 159136 3902 V SW-385 A-C50 196242 10753 SW-380 B-C50 241077 12863 SW-380 B-C50 241077 12863 SW-380 B-C50 241077 12863 SW-440 A-C50 344139 15643 SW-440 B-C50 44183 15643 SW-440 B-C50 476937 19467 SW-540 A-C50 615233 22826 SW-540 B-C50 615233 22826 SW-540 B-C50 938890 31053 SW-540 B-C50 93890 31053 SW-540 B-C50 1472633 39801 SW-540 B-C50 1472633 39801 SW-540 B-C50 2847101 60577 SW+340 B-C50 2847101 60577 SW180 16350 2044 SW180 16350 2044 SW180 12547 2616	選択 矢板名称 新面二次モーパト - 新面係数 I(cm4/m) Z(cm3/m)	
	\otimes \otimes \otimes 25285 9201 \otimes \otimes 2300 550 11600 7440 \otimes \otimes 3302 561 14232 814 8302 \otimes \otimes 84235 550 186242 10753 \otimes <th></th>	

[**矢板形式**]が「PC矢板任意指定」の場合、矢板データの一覧表から検討対象の矢板を 選択します。

この一覧表には、38種の既存PC矢板データと【オプション】メニューの【<u>PC矢板データの</u> <u>追加</u>】で入力した追加PC矢板データが表示されています。

トライアル計算を行う順番は、指定した順ではなく指定した複数のPC矢板データの中 で断面が小さいものから計算していきます。 タイ材・腹おこし材条件を指定します。

タイ材・腹おこし材の設定画面は、2タブ(画面)の構成となります。画面切り替えはタブ(タイ材、 腹おこし材)をクリックします。

第1タブ(タイ材ーグラウンドアンカーエ法以外)

【許容応力度法 (SS490)】

空之矢板式係船肩	≢6 Ver.1.1.0 - サ	ンプルデータ港湾事例	集H11			- [
F) オフ [*] ション(O)	データ入力(l)	計算(C) ヘルブ(H)					
2 🖬 🧕	1 🔿 ?						
· · · · · · · · · · · · · · · · · · ·	前面午板し	通 道 ・ 脚本オ 按えて		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓			港湾·
5/#							
2119	1812011						
−タイ材の種類・					_タイロッド		
タイロッ	F(SS490)	-			選択	径	
					∠ 1	選択	
- タイロッド許容	応力度(N/mm2)			• ¢	25	
常時	¢≦40mm	0.0			v \$	32	
	$\phi > 40$ mm	0.0			• • •	36	
地震時	¢≦40mm	0.0			v \$	42	
	$\phi >$ 40 mm	0.0			V \$	44	
けん引時	$\phi \leq 40$ mm	0.0			V \$	48	
	$\phi >$ 40mm	0.0			• •	-50 -52	
					v \$	55	
「許容5時長り何]	重の取り扱いー				• • •	60	
常時		常時扱い 🗾			v \$	70	
地震時		異常時扱い 👤			v <i>q</i>	75	
けん引時		異常時扱い・			v \$	85	
			タイ材の傾斜角度(度) 「平面で目れ角度]	0.000	• •	90 100	
タイ材の負担	Ē		前面矢板-控え工間距離	0.5			
○ 負担幅を打	皆定(m)	2.990	丸の単位(m)	10.0			
○ 前面矢板(市公)	の幅から計算	2	□ 前面矢板-控え工間 59ജ(m)	0.00			
(12.77)			※控え組杭の場合、計管値」	同時短く設定しても計算	「「内容に変更はあい	ません。	

【部分係数法(タイブル)】

【控え矢板式係船岸6 Ver.1.1.9 - サンプルデータ港湾事例 ⁽ μ(F) オブション(O) データ入力(I) 計算(C) ヘルプ (H) ☆ □ □ □ □ 二月 二月 ⑦	集H30		-		
□ □	■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	×		港湾	· 渔
タイ材の種類 タイブル タイブル ↓ タイブル ↓ タイブル ↓ タイブル ↓ ↓ タイブル ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		タイブル - 選択 マママママママママママママママママママママママママママママママ	型番 全選択 F40T F50T F100T F100T F100T F100T F100T F100T F200T F200T F200T F310T F300T F300T F300T F400T F600T		
タイ材の負担幅 ・ ・ 負担幅を指定(m) ・ 2.356 ・ 前面失板の幅から計算 ・ (れ分) ・ ・ (れ分) ・ ・ ・ ・ (れ分) ・ ・ ・ ・ ・	タイ材の価料角度(度) 0.000 「百面で見た角度] 0.5 前面失板-控え工間距離 0.5 丸め単位(m) 「 一 距離(m) ※控え組杭の場合、計算値よりも短く設定して	で計算内容に変更は	ありませ,	h.,	

[タイ材の種類]

タイ材の種類を選択します。タイロッドの場合は、材質を含めた選択です。 グラウン ドアンカーエ法を選択した場合には、本項目は選択不可となります。

[タイロッドの許容応力度/降伏応力度(N/mm²)]

許容応力度法の場合は、タイロッドの許容応力度を入力します。部分係数法の場合 は、降伏応力度を入力します。0.0を入力すれば、タイ材の種類で指定した材質の許 容応力度/降伏応力度を使用します。なお、SS400,SS490材の場合、許容応力度/降 伏応力度は、 $\phi \leq 40$ mm及び、 $\phi > 40$ mm両方の値を入力します。

[照査用特性値(タイワイヤ)] 部分係数法の場合

タイ材がタイロッド以外の場合に有効となります。照査に降伏点荷重の特性値を用いるか、みなし降伏点荷重の特性値を用いるかを選択できます。2022年以前では、後 者を標準として用いていました。現在は前者が標準となっています。

[許容引張り荷重の取り扱い]

タイ材がタイロッド以外の場合に有効となります。それぞれのケースで許容応力度 を「常時扱い」「異常時扱い」のどちらを用いるかを選択します。本項目は、許容応力 度法で検討する場合にのみ有効となります。

[タイ材の負担幅]

タイ材が受け持つ幅を指定します。「負担幅を指定」した場合、負担幅は入力した値 となります。「前面矢板の幅から計算」を指定した場合、負担幅となる矢板の枚数を 指定します。この枚数と内部に保持している矢板幅から自動的に負担幅を計算しま す。

[タイ材の傾斜角度(平面で見た角度)]

平面で見たタイ材の傾斜角 θ を入力します。

[前面矢板-控え工間距離丸め単位(m)]

計算した前面矢板と控え工の間の距離を丸める単位をm単位で指定します。例えば、 50 c m単位で丸めるのであれば、0.5となります。

[前面矢板-控え工間距離(m)]

任意の前面矢板と控え工の間の距離を入力します。前面矢板と控え工の間の距離を入力する場合は、チェックボックスをチェックし、任意の前面矢板と控え工の間の距離を入力して下さい.

控え工が控え矢板・直杭で、突出長が0.0とし、本項目を指定した場合、自動計算が実 行されます。突出長を0.0で計算した前面矢板と控え工の間の距離が指定した前面矢 板と控え工の間の距離を満足する場合は、トライアル計算は、実行されません。また、 前面矢板と控え工の間の距離を指定しない場合、あるいは、突出長を指定した場合も トライアル計算は行いません。また、誤差の関係で、指定した前面矢板と控え工の間 の距離に一致しないケースがあります。その場合は、突出長により調整してください。 また、控え工が控え版で、本項目を指定した場合、地表面以下で主働・受働崩壊面が 交わる場合に、土圧を低減して計算します。

[タイ材の選択]

タイ材の種類で選択したタイ材が表示されます。検討する項目のチェックボックス にチェックしてください。

※ 全ての材料が選択されている状態で全選択のチェックをはずすと全解除となり ます.必ず1つ以上選択して下さい

第1タブ(タイ材ーグラウンドアンカー工法)

【許容応力度法】

1/(F) 1/ 93/(0) 7 -3/	()](I) 計算(C) へ⊮/(H ◎)	
基本条件 地震時 前面矢	板 外腹材 控え工	腐食 土層 任意土圧 他外力 模式図	港湾
タイ材 腹起	し材		
「アンカーの種類―――		アンカー体長	タイブルアンカー
タイブルアンカー	· •	常時 1.60 許容付著応力度	選択 型番
	(/mm9)	てa(N/mm2) 地震時 1.60	✓ 全選択 ✓ F20TA
- STR / 11-8/07 / 201	67 mm 27		✓ F40TA ✓ F50TA
常時	0.0	(N/mm2) 常時 2.5	✓ F60TA ▼ F70TA
地震時	0.0	安全率 Fs 地震時 20	✓ F100TA ▼ F110TA
けん引時	0.0	けん引時 2.0	F130TA
	,	削孔径dA(mm) 0.0	✓ F200TA F220TA
たの引用し着きの取り	1721 \	丸め単位(m) 0.5	F230TH F270TA
常時	10、1	最小長(m) 3.00	F360TA
地震時	異常時扱い ▼		
けん引時	異常時扱い 🚽		
- タイオの負担幅		タイ材の傾斜角度(度) [平面で見た角度]	
○ 負担幅を指定(m)	2.990	前面矢板-控え工間距離 丸め単位(m)	
 前面矢板の幅から調 (物公) 	計算 2	□ 前面矢板-控え工間 0.00	
(12/)/		※控え組杭の場合、計算値よりも短く設定しても計	・ 算内容に変更はありません。
分係数法】			
♪係数法】	1.9 - サンブルデータ港湾事の	列集H30	
 大係数法】	1.9 - サンブルデータ港湾事の .カ(I) 計算(C) ヘルブ(H ※ 	列集H30)	
 	1.9 - サンブルデータ港湾事の .カ(I) 計算(C) ヘルデ(H ? 	列集H30)	
	1.9 - サンブルデータ港湾寺の 、カ(I) 計算(C) ヘルブ (H ? 板 y(・腹材 控え工	列集H30)) 腐食 土層 任意土圧 他外力 複式図	— □ - □
 う 係 数 法 】 望え矢板式係船岸6 Ver.1.1 (ル(F) オブション(O) データ入 ご 日 夏 囲 の (本条件) 地震時 前面矢 タイ材 服起	1.9 - サンブルデータ港湾事の カ(I) 計算(C) ヘルプ (H マ 板 好・服材 空 こし材	列集H30)) 斎食 土屑 任意土圧 他外力 模式図	— □ / 2湾
ナイオ 大条件 オンション(O) データ入 「注え矢板式係船岸6 Ver.1.1 (A(F) オンション(O) データ入 「「」」」 「「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」 「」」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 」 」 「」 」 「」 」 「」 」 「」 」 「」 」 「」 』 」 』 」 』	1.9 - サンブルデータ港湾事の 力(I) 計算(C) ヘルプ (H 板 タイ・服材 空工 2に材	別集H30)) 協食 土層 任意土圧 他外力 複式図 アンカー体長	ー ロ 港湾 タイブルアンカー
	1.9 - サンブルデータ港湾事の .カ(I) 計算(C) ヘルブ (H 板 y ・酸材 型	列集H30))	- □ 港湾 タイブルアンカー 選択 型番 「マーマ253日
	1.9 - サンブルデータ港湾事作 (力())計算(C) ヘルブ (H 愛 板 タイ・旗材 注え工 こ 七村	列集H30)	- □ タイブルアンカー 選択 型番 ダイブルアンカー 選択 型番 マー F20TA F40TA
	1.9 - サンブルデータ港湾事の (カ(I) 計算(C) ヘルプ (H マ 板 好・服材 控え工 3U-材	列集H30)))))))))))))))))))	- □ タイブルアンカー 選択 型番 ダ 全選択 ダ 全選択 ダ 日本 ドロト マ F40TA マ F40TA マ F40TA マ F40TA
分係数法】 授え矢板式係船岸6 Ver.1.1 なえ矢板式係船岸6 Ver.1.1 (Au(F) オブション(O) データ入 (D) データ (D) デー (D) データ (D) デー	1.9 - サンブルデータ港湾事の (力(I) 計算(C) ペルプ (H マ 板 好・服材 控え工 2し材 レ材 レ材	列集H30)))))))))))))))))))	ー □ タイブルアンカー 選択 型番 ダ 全選択 ダ 子20TA ダ F40TA マ F40TA マ F50TA マ F80TA マ F80TA F80TA F100TA
 ・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・	1.9 - サンブルデータ港湾事の (力() 計算(C) ヘルプ (H マ 板 外・腺材 空工 3L 材 40mm 0.0	列集H30)))))))))))))))))))	ー □ タイブルアンカー 選択 型番 ダ F20TA ダ F40TA ダ F40TA ダ F40TA ダ F40TA ダ F40TA ダ F10TA マ F100TA マ F100TA マ F100TA
 六係数法	1.9 - サンブルデータ港湾事の (カ())計算(C) ヘルブ (H マ 板 タイ・旗材 控え工 こし材 ↓ 40mm 0.0 0.0	別集H30) 「 「 「 「 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 」 「 」 」 」 「 」 」 」 、 、 、 、	- ロ タイブルアンカー 選択型番 ダ 全選択 ダ 子20TA ダ F40TA ダ F50TA ダ F50TA ダ F50TA ダ F100TA ダ F100TA ダ F100TA ダ F100TA ダ F100TA ダ F100TA ダ F100TA
	1.9 - サンブルデータ港湾事の (カ()) 計算(C) ペルブ (H マ 板 タイ・旗材 控え工 とは材 レイオ レイオ レイオ レイオ レース ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 加 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	列集H30)	- ロ タイブルアンカー 選択 型番 ダイブルアンカー 選択 型番
 ・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・	1.9 - サンブルデータ港湾事の (カ(1))計算(C) ヘルブ (H マ 切り、計算(C) ヘルブ (H マ 切り、一部での 加加加加加加加加加加加加加加加加加加加加加 (1/mm2) 	列集H30)	- ロ タイブルアンカー 選択 型番 ダ 全選択 ダ 子20TA ダ F40TA ダ F40TA ダ F40TA ダ F40TA ダ F40TA ダ F100TA ダ F200TA ダ F200TA ダ F200TA ダ F200TA ダ F200TA
 ・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・	1.9 - サンブルデータ港湾事の (カ(1) 計算(C) ヘルプ (H マ 板 好・服材 控え工 3LA材 	別集H30)))))))))))))))))))	- ロ タイブルアンカー 選択 型番 ダ 全選択 ダ 子201A ダ F40TA デ F50TA ダ F40TA ド F50TA ダ F100TA ダ F100TA ダ F100TA ダ F1200TA ダ F200TA ダ F200TA ダ F200TA ダ F200TA ダ F200TA ダ F200TA ダ F200TA
 六係数法】 「控え失振式係船岸6 Ver.1.1 (ル(F) オブション(O) データ入 (回) 回 回 回 回 回 回	1.9 - サンブルデータ港湾事の (力(I) 計算(C) ペルプ (H マ 板 好・服材 控え工 2し材 40mm 0.0	列集H30)	- □ タイブルアンカー 選択 型番 ダ <u>全変現</u> ダ 子20TA ダ F40TA ダ F40TA ダ F40TA ダ F40TA ダ F40TA ダ F10TA ダ F30TA
 六係数法	1.9 - サンブルデータ港湾事の (力() 計算(C) ヘルプ (H マ 板 外・腺材 控え工 3L4材 40mm 0.0	列集H30)	- □ タイブルアンカー 選択 型番 ✓ 全遊訳 ✓ F40TA ✓ F40TA ✓ F40TA ✓ F50TA ✓ F50TA ✓ F100TA ✓ F100TA ✓ F100TA ✓ F100TA ✓ F200TA ✓ F200TA ✓ F200TA ✓ F200TA ✓ F200TA ✓ F200TA ✓ F200TA ✓ F200TA ✓ F200TA ✓ F300TA
 六係数法】 「控え矢板式係船岸6 Ver.1.1 (A(F) オブジョン(O) データ入 「回 回 面 回 回 回 面 回 回 回 面 回 回 面 回 回	1.9 - サンブルデータ港湾事の (力())計算(C) ヘルプ (H マ 板 外・銀村 逆ス工 シ 4/mm2) 40mm 0.0	別集H30) 「 「 「 「 「 「 」 」 「 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 」 「 」 」 」 、 」 」 、 」 、	- ロ タイブルアンカー 選択 型番 ダ 全近沢 ダ F40TA ダ F40TA ダ F40TA ダ F50TA ダ F50TA ダ F100TA ダ F100TA ダ F100TA ダ F100TA ダ F100TA ダ F100TA ダ F100TA ダ F200TA ダ F200TA
 六係数法】 「空え矢板式係船岸6 Ver.1.1 (A(F) オブジョン(O) データ入 「回 回 頭 回 回 頭 回 回	1.9 - サンブルデータ港湾事の (.力(1) 計算(C) ヘルブ (H マ 切 好・服材 控え工 こし村 40mm 0.0 2.356	アンカー体長 第時 第回 Pアンカー体長 第時 1500 計容付着応力度 地震時 1500 すな(N/mm2) 地震時 1500 アンカー周面摩擦拡充 て 0.180 アンカー周面摩擦広 (20) 15.00 日本の (20) 15.5 東小長(m) 3.00 シイ材の/峰和角度(度) 0.000 前面尖板-控え工間距離 0.5 丸め単位(m) 0.5 丸の単位(m) 0.5	- ロ タイブルアンカー 選択型番 ダ 全球銀沢 ダ 子2017A ダ F40TA ダ F50TA ダ F50TA ダ F100TA ダ F100TA

[アンカーの種類]

グラウンドアンカーの種類を選択します。タイブルアンカーもしくはEHDアンカーが 選択可能です。

[許容引張り荷重の取り扱い]

それぞれのケースで許容応力度を「常時扱い」「異常時扱い」のどちらを用いるかを 選択します。本項目は、許容応力度法で検討する場合にのみ有効となります。

[タイ材の負担幅]

アンカーが受け持つ幅を指定します。「負担幅を指定」した場合、負担幅は入力した 値となります。「前面矢板の幅から計算」を指定した場合、負担幅となる矢板の枚数 を指定します。この枚数と内部に保持している矢板幅から自動的に負担幅を計算し ます。

[アンカー体長]

アンカー体の定着長を算出するための各種諸元を入力します。
 (許容付着応力度 τ a)
 テンドン付着長の計算で使用する許容付着応力度を入力します。初期値は、0.0となっています。適切な値を入力します。
 (アンカー周面の摩擦抵抗 τ)
 アンカー体長の計算で使用する摩擦抵抗を入力します。
 (安全率)
 アンカー体長の計算で使用する資全率を入力します。
 アンカー体長の計算で使用する削孔径を入力します。0.0を入力すれば、標準(カタログ値)の削孔径を使用します。
 (丸め単位)
 (最小長)
 デンドン付着長、アンカー体長の丸の単位を入力します。

[タイ材の傾斜角度(平面で見た角度)]

平面で見たタイ材の傾斜角 θ を入力します。

[アンカーの選択]

アンカーの種類で選択したアンカー材が表示されます。検討する項目のチェックボ ックスにチェックしてください。

※ 全ての材料が選択されている状態で全選択のチェックをはずすと全解除となり ます.必ず1つ以上選択して下さい

第2タブ(腹おこし材)

	<u> タイ・腹材</u> 控え	L 腐食	│ <mark>☆</mark> 土層	任意土	王 王 他外力	模式図	■ 補修		港湾
タイ材 腹起し	₩]								
- 腹起しの有無			□腹起し材	·					
▶ 「▼ 前面矢板側に腹起し	を取付ける		選択	н	в	t1	t2	I	z
□ 按えて側に推起しる						소選	招	-	
	111100		▼	75.0	40.0	5.0	7.0	75.3	20.1
			 Image: A start of the start of	100.0	50.0	5.0	7.5	188.0	37.6
			✓	125.0	65.0	6.0	8.0	424.0	67.8
作用力にタイ材傾斜	角を考慮する		✓	150.0	75.0	6.5	10.0	861.0	115.0
			✓	150.0	75.0	9.0	12.5	1050.0	140.0
- Mmay 符山式 M-TL A/L	公丹小値(2)			180.0	/5.0	7.0	10.5	1380.0	153.0
	月40月直(八)			200.0	80.0	/.0	10.5	1850.0	180.0
前面矢板側	10.00			200.0	90.0	8.0	10.0	2490.0	248.0
Andra T. anna Albai	10.00			250.0	90.0	11 0	14.5	4100.0	334.0 974.0
「控え」上側	10.00			200.0	90.0	9.0	13.0	6440.0	429 0
				300.0	90.0	10.0	15.5	7410.0	494.0
	0)			300.0	90.0	12.0	16.0	7870.0	525.0
□ 服起しM計谷応力度(N/I	mm2)			380.0	100.0	10.5	16.0	14500.0	763.0
常時	0.0		Image: A start of the start	380.0	100.0	13.0	16.5	15600.0	823.0
地震時	0.0		Image: A state of the state	380.0	100.0	13.0	20.0	17600.0	926.0
14/204	0.0								
けんちゆう	0.0								

[腹おこしの有無]

前面矢板側・控え工側それぞれに腹起し材を設定するかどうかの選択が可能です。

[作用力にタイ材傾斜角を考慮する]

タイ材に傾斜角がある場合、作用力にその傾斜角を考慮し応力照査を行うかどうか を設定します。

[腹おこし材の許容応力度/降伏応力度(N/mm²)]

許容応力度法の場合は、腹おこし材の許容応力度を入力します。部分係数法の場合 は、降伏応力度を入力します。0.0を入力すれば、SS400材の許容応力度/降伏応力 度を使用します。

[最大曲げモーメント算出式]

腹おこし材の最大曲げモーメント算出式(M=TL/X)の分母の値を入力します。通常 10.0を入力します。河川などの場合で4.0を指定することがあります。

[腹おこし材の選択]

検討する項目のチェックボックスにチェックしてください。

※ 全ての材料が選択されている状態で全選択のチェックをはずすと全解除となり ます.必ず1つ以上選択して下さい

<u>4-5. 控え工条件</u>

控え工(控え矢板・直杭、控え版、控え組杭)の各種条件を指定します。 控え工の設定画面は、設計条件で指定した控え工の形式により以下のようになっています。 「控え矢板・直杭」6タブ(<u>条件1、条件2、矢板任意、鋼管杭指定、PC矢板任意、H形鋼指定</u>) 構成

「控え版」 2タブ(<u>条件</u>、<u>安全係数</u>)構成
 「控え組杭」 3タブ(<u>条件</u>、<u>杭条件</u>、<u>支持力条件</u>)構成
 画面の切り替えはそれぞれのタブをクリックします。

第1タブ(控え矢板・直杭-条件1)

161 控え矢板式係船岸6 Ver.1.1.4 - サンプルデータ漁	港·漁場構造物設計計算例H16(砂質土地盤)	-	- 🗆 X
ファイル(F) オブション(O) データ入力(I) 計算(C) ヘル	יד ^י (H)		
□□	▲ 1000000000000000000000000000000000000	模式図	港湾·渔港
条件1 条件2 矢板	任意 翻管杭指定 PC矢板任意	H形鋼指定	
 - 根入れ部の計算方法 ○ C型地盤 ○ S型地盤 ○ S型地盤 ○ チャンの方式 	U形矢板 で L型 で 普通型 で 広幅型	ヤング係数(kN/mm2) □. 「有効幅 B(m)	0
 断面の決定方法 ✓ 変位量 ※ 許容応力度については無条件にチェックします。 	材質 で SYW295, SKK400, SHK400(M) で SYW390, SKK490, SHK490M で SYW430	地盤 [0] 控え工 [0] - 枕の仮想突出長(m) - 常時 [0]	000
控え工形式 ○ U形矢板 ○ Z形矢板 ○ ハット形矢板 ○ 矢板任意指定	控え工の許容応力度(N/mm2) 常時 0.0 地震時 0.0 Iけん引時 0.0	地震時 0. けん引時 0. 津波時 0. 定想突出長を考える場合の したれ取けに位置	000 000 000 Im1/3基準位置
 ・	控え工の許容変位量(cm) 常時 3.00 地震時 5.00 けん引時 0.00	→ 174X7120年 曲げモーメント算出位置のす No 深度(m) ア	・ 皆定(参考値) く タイ材取付位 読を基準とした深 まで指定します。

[根入れ部の計算方法]

控え工の計算方法を「チャンの方式」、「C型地盤」、「S型地盤」の中から選択します。

[断面の決定方法]

無条件に許容応力度でトライアル計算を行います。それにプラスして許容変位量での照査を行うことが可能です。変位量の照査を行う場合、チェックボックスにチェッ クを入れます。

[控えエ形式]

控え工の形式を指定します。本システムでは、内部に矢板データを保持しています。 「U形」、「Z形」、「ハット形」、「PC矢板(JIS準拠品)[塩対]」、「P C矢板(JIS)」等を指定した場合、システム内部の矢板データを使用し、トライ アル計算を行います。

「矢板任意指定」、「PC矢板任意指定」を指定した場合、第3、第5タブでシステム内部の矢板データに加えて、追加入力した任意矢板データの中から検討矢板を任 意に選択できます。

「鋼管杭指定」、「H形鋼杭指定」等を指定した場合、第4、第6タブで杭形状を任 意に指定できます。

尚、P C 矢板で港湾用 P C 矢板を用いる場合は、システム内部に矢板データを保持し ていませんので、全て「オプション」-「<u>P C 矢板データの追加</u>」により矢板データ の入力を行う必要があります。

[U形矢板]

U形矢板を使用する場合、U形矢板の型を「L型」、「普通型」、「広幅型」から選択します。

[材質]

鋼矢板、鋼管杭、H形鋼杭を使用する場合、矢板の材質を指定します。

鋼矢板の場合SYW295・SYW390・SYW430(ただし、SYW430はハット形鋼矢板の場合のみ 選択可能)、鋼管杭の場合SKK400・SKK490、H形鋼杭の場合SHK400(M)・SHK490Mから 選択します。

※SYW430の許容応力度は、2018年8月現在基準書等には明示されていませんが、以下 の文献から、本システムでは降伏応力度の60%として計算し、安全側に丸めること で、次のように算出しています。

SYW430の許容応力度=430.0×0.6=258≒255 N/mm²

参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.317 2.3.2(2)

[控え工の許容応力度/降伏応力度]

許容応力度法の場合は、常時・地震時・けん引時の控え工の許容応力度を入力します。 部分係数法の場合は、降伏応力度を入力します。入力値が0.0の場合、指定した控え 工の許容応力度/降伏応力度を採用します。PC矢板の場合、応力度チェックは許容 応力度/降伏応力度では行いませんので、この項目は入力不可となります。

[矢板の許容変位量]

常時・地震時・けん引時の控え工の許容変位量を入力します。この項目は、許容変位量のチェックを行う場合だけ有効となります。

[ヤング係数]

使用する矢板のヤング係数を入力します。入力値が0.0の場合以下の値を採用します。

鋼矢板・鋼管矢板 : E = 200kN/mm² PC矢板 : E = 35.0kN/mm²

[有効幅B]

地盤の有効幅、控え工の有効幅を入力します。

地盤の有効幅はチャンの方式の特性値算出式のBや、港研方式のBkc、BksのBに使用します。

控え工の有効幅は、m当たりのI、Z、ひび割れモーメントをこの値により有効とされる幅当たりの値に換算します。入力値がOの場合、タイ材の負担幅、あるいは杭径の有効幅を使用します。

地盤及び、控え工の有効幅に0あるいは、タイ材負担幅と同じ値を入力した場合、内 部では壁幅1m当たりとして計算を行います。(通常)

[杭の仮想突出長]

控え工の突出長を考慮したい場合に、控え工のタイ材取り付け位置から突出と考え られる位置までの長さを入力します。この項目を入力すれば、控え工の計算や、前面 矢板と控え工の間の距離の計算に突出長を考慮できます。また、本項目が0.0でかつ、 前出の前面矢板-控え工間距離を入力した場合、その距離に一致するように突出長 を自動計算します。

[仮想突出長を考える場合のlm1/3基準位置]

仮想突出長を考える場合に、控え工側の受働崩壊角立ち上げ位置である lm1/3位置を とる基準位置を次の2つのうちどちらかを選択します。

タイ材取付位置を選択(参照:港湾技術研究所報告 第4巻2号 Vol.4 No.2 垂直控え 杭の横抵抗について)

[曲げモーメント算出位置の指定(参考値)]

指定した任意の位置の曲げモーメントを参考値として印刷します。本項目は、根入れ 部の計算方法が「チャンの方式」の時のみ有効です。位置については、タイ材取り付 け位置を基準とした深度で入力します。

第2タブ(控え矢板・直杭-条件2)

📆 控え矢板式係船岸6 Ver.1.0.0 - サンプルデータ漁港・漁場構造物設	않計計算例H16(砂質土地盤) 📃 💷 💌
ファイル(F) オプション(O) データ入力(I) 計算(C) ヘルプ(H)	
① 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当	¥ ¥ 任意土圧 他外力 模式図
条件1 条件2 矢板任意 鋼管杭指	定 PC失板任意 H形鋼指定
主働崩壊面の立ち上げ位置	地盤反力係数(kh)·横抵抗定数(kcks)
◎ 設計海底面	- 地盤反力係数(kh)
○ 仮想海底面	C 直接入力(kN/m3) 0.0
○ 曲げモーメント第一〇点	○ N値より計算(横山の図) 0.0
○ 曲げモーバント第一○点もしくは、設計海底面のうち 図 いまう	○ N値より計算(Kh=1500N) 10.0
746182	C N値より計算(相関式) 0.0
- 崩壊面の交差位署	○ N値より計算(道路橋) 0.0
	○ C(kN/m2)より計算(道路土工[仮設]) 0.000
C 地表面	C E0(kN/m2)より計算 0.0
	○ N値より計算(福岡・宇都の図) [0.0
┌根入れ長―――	BH: 矢板壁の場合の換算載荷幅(m) 10.0
根入れ長係数 3.00	┏地盤反力係数の推定に用いる係数α ────
根入れ長丸め単位(m) 0.5	常時 0
□ 根入れ深度(m) 0.00	地震時 0
○ 「矢板の継ぎ手効率(α)	@ 直接入力(Kc:kN/m2.5,Ks:kN/m3.5) 0.0
根入れ長計算時(I) 1.00	○ 平均N値より計算
矢板断面計算時(I) 1.00	 N値の増加率より計算 0.00
矢板断面計算時(Z) 1.00	□ 計算値または入力値を3/4する

[主働崩壊面の立ち上げ位置]

前面矢板と控え工の間の距離の計算に用いる主働崩壊面の立ち上げ位置を設定しま す。根入れの計算法が「フリーアースサポート法」の場合、「設計海底面」、「仮想海底面」から、 「たわみ曲線法」の場合、「設計海底面」、「曲げモーメント第一ゼロ点」、「曲げモーメ ント第一ゼロ点もしくは、設計海底面のうち深いほう」から選択します。「ロウの方法」 の場合、設計海底面固定となります。

[崩壊面の交差位置]

前面矢板と控え工の間の距離を計算する場合の主働崩壊面と受働崩壊面の交わる位 置を「タイ材位置」、「地表面位置」から選択します。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.1088

参照:『漁港・漁場の施設の設計参考図書 2015年』P.525

[根入れ長係数]

根入れ部計算方法が「チャンの方式」の場合、根入れ長算出式(L=X $/\beta$)のXの 値を指定します。Oを指定すれば、3. O/β を用いて根入れ長を計算します。

[根入れ長丸め単位]

根入れ長を丸める単位をm単位で指定します。例えば、50cm単位で丸めるのであれば、0.5となります。

[根入れ深度(m)]

任意の根入れ深度を入力します。根入れ深度を入力する場合は、チェックボックスを チェックし、任意の根入れ深度を入力して下さい.入力された根入れ深度から矢板長 を計算します。

[矢板の継手効率(α)]

継ぎ手効率を考慮する場合に入力します。継ぎ手効率を考慮しない場合は、1.0を入 力します。尚、継手効率が有効となるのは、U形矢板の場合です。矢板任意指定の場 合でもU形矢板が選択可能なため、入力が可能となりますが、選択する矢板を間違え ないよう注意してください。

参照:『鋼管杭協会,鋼矢板 設計から施工まで 2014年』P108

[地盤反力係数、横抵抗定数]

根入れの計算方法によって、横抵抗定数(港研方式)・地盤反力係数(チャンの方式) の入力を行います。入力方法を選択し、必要な値を入力してください。

尚、港湾の施設の技術上の基準・同解説(下)平成19年7月から、従来のkh算出方法(横山の提案)の他に、N値との相関式による算出方法が追加されました。どちらの値を用いるかは、技術者の判断によるものとされていましたが、港湾の施設の技術上の基準・同解説(中)平成30年5月版からは、記述が削除されています。

また、港研方式の場合の横抵抗定数(ks地盤,kc地盤)の算出方法は、N値との相関式に よる算出方法に変更となりました。

本システムの場合、kh算出方法については、設計基準に関わらずどちらも選択可能で す。港研方式の場合の横抵抗定数については、設計基準が「港湾基準」で部分係数を 考慮した検討が「検討する」の場合、自動的にN値との相関式による算出方法を採用 します。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.720~

- 参照:『港湾の施設の技術上の基準・同解説(下) 平成19年7月』P.627~
- 参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.457~

参照:『漁港・漁場の施設の設計参考図書 2015年』P.264~

尚、地盤反力係数の算出式が道路橋示方書による方法の場合、換算載荷幅BHと係数α の指定が可能です。

参照:『道路橋示方書・同解説Ⅳ下部構造編 平成24年3月』P.284~

参照:『道路土工 仮設構造物工指針 平成11年3月』P.105

また、控え工が矢板の場合で、地盤反力係数(kh)を3/4する場合があります。その 場合は、計算値または入力値を3/4するチェックボックスにチェックを入れてく ださい。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.1111⑦

第3タブ(控え矢板・直杭ー矢板任意)

10 控え矢板式係船岸6 Ver.1.1.4 - サン	/プルデータ漁港・漁場構造物設	計計算例H16(砂質土地盤	ž)	_		×
ファイル(F) オブション(O) データ入力(I)	計算(C) ヘルブ(H)					
D 🛎 🖬 💆 🌆 🎒 📍						
▲ 基本条件 地震時 前面矢板 外	加 加 加 腹材 控え工 腐食	土層 任意土圧 他	▶ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		· 港湾·	渔港
条件1 条件2	矢板任意 鋼管	管杭指定 PC矢板仔	〔意 】 H形鋼指定 】			
	選択 矢板名称 SP-Ⅲ SP-Ⅲ SP-VL SP-VL SP-VL SP-Z82 SP-Z88 SP-Z88 SP-Z45 SP-Ⅱ SP-Ⅲ SP-№ SP-10H SSP-10H SSP-	比市面二次モーペント ICcm4/m) 8740 16800 38600 86000 38300 65200 65200 83500 13000 32400 56700 10500 24400 45000 56100 45000 10600 22800 41800 17400 4220 3880	斯市(条数) 2(cm3/m) 874 1340 2270 3150 3820 2510 3200 3800 4550 2700 2700 529 880 1520 2250 275 2850 275 275			

[控え**エ形式**]が「矢板任意指定」の場合、矢板データの一覧表から検討対象の矢板 を選択します。

この一覧表には、既存鋼矢板データと【オプション】メニューの【<u>鋼矢板データの追加</u>】 で入力した追加鋼矢板データが表示されています。

トライアル計算を行う順番は、指定した順ではなく指定した複数の矢板データの中 で断面が小さいものから計算していきます。

第4タブ(控え矢板・直杭ー鋼管杭指定)

画 通	<mark>港湾・漁港</mark>
条件1 条件2 矢板任意 新管杭指定 PC矢板任意 H形鋼指定	
No 外径 (mm) 厚さ (mm) 断面二次 モーバント(cm4) 断面係数(cm3)	
1 1000.0 11.0 418000 8360	

[控え工形式]が「鋼管杭指定」の場合、形状を指定します。 腐食前の断面性能でカタログ値を使用する場合は、断面二次モーメント・断面係数も 入力してください。省略した場合、内部で計算します。

トライアル計算を行う順番は、指定した順で計算していきます。

第5タブ(控え矢板・直杭-PC矢板任意)

10 控え矢板式係船岸6 Ver.1.0.0 - サ	ンプルデータ港湾事例集H	130		
ファイル(F) オプション(O) データ入力(I)	計算(C) ヘルプ(H)			
□≥₽ 🧕 🗐 👔				
個 基本条件 地震時 前面矢板 匆イ・)	1 腹材 控え工 腐食	1 1	▲ 載 ● 載 ● 載 ● 単 ● 単 ● 単 ● ●	港湾·渔港
条件1 条件2	│ 矢板任意 │ 綱	管杭指定 PC矢板日	E意 H形鋼指定	
	 選択 矢板名称 SW-275-C50 SW-300-C50 SW-305-C50 SW-385 B-C50 SW-385 B-C50 SW-385 B-C50 SW-380 B-C50 SW-440 B-C50 SW-840 B-C50<!--</th--><th>世元面二次モーメント Kcm4/m》 第5265 111800 142322 156136 136242 241077 241077 241077 241077 241077 344139 344139 344139 476937 616233 616233 616233 616233 898690 393690 393690 393690 1472639 2068517 2847101 6912 18350 22547 45722</th><th>世話の「条数」 Z(cm3/m)</th><th></th>	世元面二次モーメント Kcm4/m》 第5265 111800 142322 156136 136242 241077 241077 241077 241077 241077 344139 344139 344139 476937 616233 616233 616233 616233 898690 393690 393690 393690 1472639 2068517 2847101 6912 18350 22547 45722	世話の「条数」 Z(cm3/m)	

[控え工形式]が「PC矢板任意指定」の場合、矢板データの一覧表から検討対象の 矢板を選択します。

この一覧表には、38種の既存PC矢板データと【オプション】メニューの【<u>PC矢板デー</u> <u>タの追加</u>】で入力した追加PC矢板データが表示されています。

トライアル計算を行う順番は、指定した順ではなく指定した複数の矢板データの中 で断面が小さいものから計算していきます。

第6タブ(控え矢板・直杭-H形鋼指定)

「 「 」 控え矢板式係船岸6 Ver.1.0.0 - サ ファイル(F) オプション(O) データ入力(I)	ンプルデータ港湾事例: 計算(C) ^レレプ(H)	集H30			
	1 1111 1111 1111 11111 11111 111111111	: 土層 (f	1000000000000000000000000000000000000		<mark>港湾・漁港</mark>
条件1 条件2	矢板任意	鋼管杭指定	PC矢板任意	日形綱指定	
No 高さH (mm) 幅B(mm)	ウエブ長 t1 フランジ長 (mm) t2 (mm)	断面二次 モーメント I (cm4)	断面係数 Z (cm3)		
1 400.0 408.0 2 350.0 380.0	21.0 21.0 20.0 20.0	70900 60000	3500 3000		
	<u></u>				
→ <mark> </mark> ←					
	H				
t2					
e B ↑	->				

[控え工形式]が「H形鋼指定」の場合、形状を指定します。入力されたデータから 腐食前のI、Zを自動計算する場合は、I、Zの項目は入力しないでください。 メーカーカタログの値などを使用する場合、I、Zの項目にデータを入力してください。

腐食後の断面係数は自動計算します。

トライアル計算を行う順番は、指定した順で計算していきます。

第1タブ(控え版ー条件)

10 控え矢板式係船岸6 Ver.1.0.0 - サンプルデータ	9漁港・漁場構造物設	計計算例H16(砂質土地盤	1)	- • ×
ファイル(F) オプション(O) データ入力(I) 計算(C) ^	₩7°(H)			
	エ 腐食 土層	任意土圧 他外力	模式図	<mark>港湾・漁港</mark>
条件 安全係数				
控え版安全率	- 鉄筋		-鉄筋コンクリート	
地震時 2.0	水平筋	10.0	設計基準強度(N/mm2) 24	1.0
けん引時 2.0	鉛直筋	15.0	- 許容圧縮応力度(N/mm2)	
主働崩壊面の立ち上げ位置 ○ 設計海底面 ○ 仮相策底面	ービッチ(mm) 水平筋 鉛直筋	250.0	市时 [0.00 地震時 [0.00 けん引時 [0.00	
 ○ 曲げモーッパ第一0点 ○ 曲げモーッパ第一0点もしくは、設計海底面のうち深いはう 	鉄筋の種類	SD345	- 許容せん断応力度(N/mm 常時 0.00 地震時 0.00	2)
─上載荷重の考慮(考慮するものにチェック)-	515長降伏強度(N/n	N/mm2)	けん引時 0.00	
✓ 主働土圧✓ 受働主圧✓ 受働崩壊角	常時 地震時	0.00	─許容付着応力度(N/mm2) 常時	
- 断面の検討方法	けん引時	0.00	地震時 0.00	
 ○ 許容応力度法 ○ 限界状態設計法 	使用鉄筋径 水平筋	最小鉄筋 ▼	0.00	
控え版の厚さ(m) 0.35	鉛直筋	最小鉄筋 ▼		
」 0.0を指定すれば、指定した鉄筋コンクリートの許容せ	ん断応力度を使用します	す 。		

[控え版安全率]

控え版の安定検討を行う場合の安全率を入力します。本項目は、許容応力度法の場合のみ設定可能です。

[主働崩壊面の立ち上げ位置]

前面矢板と控え工の間の距離の計算に用いる主働崩壊面の立ち上げ位置を設定しま す。根入れの計算法が「フリーアースサポート法」の場合、「設計海底面」、「仮想海底面」から、 「たわみ曲線法」の場合、「設計海底面」、「曲げモーメント第一ゼロ点」、「曲げモーメ ント第一ゼロ点もしくは、設計海底面のうち深いほう」から選択します。「ロウの方法」 の場合、設計海底面固定となります。

[上載荷重の考慮]

控え版の主働土圧/受働土圧及び、前面矢板と控え工との間の距離を計算する場合 に使用する崩壊角の計算に、それぞれ上載荷重を考慮するかどうかの選択を行いま す。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.1112

参照:『漁港・漁場の施設の設計参考図書 2015年』P.526

[断面の検討方法]

控え版の断面の検討方法を指定します。「許容応力度法」、「限界状態設計法」のどち らかを選択します。限界状態設計法の場合、後の安全係数を入力します。尚、部分係 数法の場合は、無条件に限界状態設計法が設定されます。

[控え版の厚さ]

控え版の厚さを入力します。

[鉄筋のかぶり]

水平筋、鉛直筋のかぶりを入力します。かぶりは、純かぶりを入力します。

[鉄筋のピッチ]

水平筋、鉛直筋のピッチを入力します。ピッチは、鉄筋の中心から中心までの長さで す。

[鉄筋の種類]

使用する鉄筋の種類を選択します。

[鉄筋の引張降伏強度]

鉄筋の引張降伏強度を入力します。0.0を入力すれば、指定した鉄筋の引張降伏強度 を使用します。限界状態設計法の場合にのみ有効です。

[鉄筋の許容引張応力度]

鉄筋の許容引張応力度を入力します。0.0を入力すれば、指定した鉄筋の許容引張応 力度を使用します。また、地震時・けん引時の場合は指定した鉄筋の許容引張応力度 を1.5倍した値を用います。許容応力度法の場合にのみ有効です。

[使用鉄筋径]

配筋に用いる鉄筋径を水平筋、鉛直筋ともに指定します。「最小鉄筋」とすれば、ト ライアル計算により、最小の断面となるよう計算を行います。

[鉄筋コンクリートの設計基準強度]

鉄筋コンクリートの設計基準強度を入力します。

[鉄筋コンクリートの許容圧縮応力度]

鉄筋コンクリートの許容圧縮応力度を入力します。0.0を入力すれば、指定した鉄筋 コンクリートの許容圧縮応力度を使用します。また、地震時・けん引時の場合は指定 した鉄筋コンクリートの許容圧縮応力度を1.5倍した値を用います。許容応力度法の 場合にのみ有効です。

[鉄筋コンクリートの許容せん断応力度]

鉄筋コンクリートの許容せん断応力度を入力します。0.0を入力すれば、指定した鉄 筋コンクリートの許容せん断応力度を使用します。また、地震時・けん引時の場合は 指定した鉄筋コンクリートの許容せん断応力度を1.5倍した値を用います。許容応力 度法の場合にのみ有効です。

[鉄筋コンクリートの許容付着応力度]

鉄筋コンクリートの許容付着応力度を入力します。0.0を入力すれば、指定した鉄筋 コンクリートの許容付着応力度を使用します。また、地震時・けん引時の場合は指定 した鉄筋コンクリートの許容付着応力度を1.5倍した値を用います。許容応力度法の 場合にのみ有効です。

第2タブ(控え版ー安全係数)

3 条件 地震時 i	10 10 10 10 10 10 10 10 10 10 10 10 10 1	「 腐食 土層	任意土圧 他外力	模式図		港湾
条件	安全係数					
ヤング係数(kN/m	m2)		_====================================			
コンクリート	0.0			# ****	Normal Sources	使用限界
鉄筋	0.0		曲げ・動ち広励せ	常時 110	- 地震時	1.00
++++++1/5/#+=/)			せん断耐力	1.30	1.30	1.00
**************************************	終局限界 使用限!	界				
コンクリート	1.30		⊢構造物係数(γi)-			
鉄筋	1.00	_		新	8局限界	使用限界
	· · · ·			常時	- 地震時	1.00
荷重係数(γf)—				11.00	11.00	11.00
	終局限界	使用限界		/ ~ # L	0.0040	_
けん引力以外の	常時 地震時	1.00	計谷ひひ割れ幅	1糸安贝	10.0040	
両重 けん引力	1.10	1.00				

[ヤング係数]

コンクリート、鉄筋のヤング係数を入力します。入力値が0.0の場合以下の値を採用 します。

- コンクリート : 指定したコンクリートのヤング係数
 鉄筋 : E=200kN/mm²
- [材料係数(γm)、荷重係数(γf)、部材係数(γb)、構造物係数(γi)] 終局限界状態、使用限界状態の検討に必要な各種係数を指定します。初期値として は、『港湾の施設の技術上の基準・同解説(中)平成30年5月』P.594を元に設定して います。参考基準に港湾の施設の技術上の基準・同解説(上)平成11年4月』P.331を 用いる場合には、値の再設定が必要です。

[許容ひび割れ幅係数]

使用限界状態の検討で使用する許容ひび割れ幅を計算するための係数を入力します。

第1タブ(控え組杭ー条件)

超 274/J(F) オプ ション(O) データ入力(I) 計算(C) ヘルプ(H)		- • ×
□ ☞ ■ ● ■ ● ♥ ■ ■ ■ ● ♥ 基本条件 地震時 前面失板 好·服材 □2五		港湾·渔港
条件 枕条件 支持力条件 杭の種類 ● 銅管枕 ● 相応の計算方法 ● 名杭の軸方向支持力のみで計算 ● 林の軸方向支持力のみで計算 ● 本の軸方向支持力のみで計算 ● 林の軸方向支持力のみで計算 ● 林の軸方向支持力のみで計算 ● 林間回定の式(ハ1)9年事例集)のみによる ● 林間回とつの式のみによる ● 市方を比較し大きいほうを選択する 上載荷重の考慮 ● 市方を比較し大きいほうを選択する 上載荷重の考慮 ● 市方を比較し大きいほうを選択する 上載荷重の考慮 ● 小振見つ気しない ● 読録地版面 ● 「「「「「「」」」」	¥抗生土 C->N値計資時に使用する式 [qu(N/mm2)=N/X]の分母の値(X) * 地盤反力係数(kh) ご直接入力(kN/m3) ・N値走り計算(秋山の図) ・N値走り計算(対山の図) ・N値走り計算(道路土工(仮説)) C C(kN/m2)より計算(道路土工(仮説)) C E0(kN/m2)より計算(道路土工(仮説)) * C C(kN/m2)より計算(道路土工(仮説)) * から 北盤反力係数(xh) * から かにしいういでのはったいのから がしまり計算(道路土工(仮説)) * がしたり計算(通路土工(仮説)) * から かにしいういから (本) * から かにしいう計算(加) * がしたり計算(加) * から * から * がしかっ 地量についたり、 * から * から * から * の がしまりまり * を) * がしたりまり * がしたりまり * がしたりまり * がしたりまり * がし * から * がしたり * がしたり * がしたり * * がしたり * がしたり * がしたり * がしたり * * * * <td< th=""><th>40.0 10000.0 5.0 5.0 0.0 0.0 0.0 <</th></td<>	40.0 10000.0 5.0 5.0 0.0 0.0 0.0 <
コンウリートの単位体積重量(kN/m3) 24.0 ヤング係数(kN/mm2) 0.0	崩壊面の交差位置 で タイ材位置 で 地表面	

[杭の種類]

控え組杭の種類を「鋼管杭」、「H形鋼杭」から選択します。

[組杭の計算方法]

控え組杭の計算方法を指定します。「各杭の軸方向支持力のみで計算」かあるいは、 「杭の軸方向・軸直角方向抵抗を考慮して計算」のどちらかを選択します。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.723~ 参照:『漁港・漁場の施設の設計参考図書 2015年』P.256

尚、「杭の軸方向・軸直角方向抵抗を考慮して計算」の場合の計算式は、『港湾の施 設の技術上の基準・同解説(上) 平成11年4月』P.474~を参照してください。

※ 港湾の施設の技術上の基準・同解説においては、組杭の水平抵抗力の算定手法について、標準的に適用できると考えられる複数の方法が参考として提示されています。したがって、設計者の判断に基づき、種々の方法による検討結果を総合的に検討し、組杭の水平抵抗力の評価を行うこととされています。

[採用するモーメントの計算方法]

[組杭の計算方法]で「杭の軸方向・軸直角方向抵抗を考慮して計算」を選択した場合 の応力計算で使用するモーメントの計算方法が選択可能です。港湾構造物設計事例 集(平成19年 改訂版)によれば、直杭式横桟橋を参考にした杭頭固定のチャンの式 が用いられ、その結果とフレーム計算(杭頭ピン)を行った結果とを比較し、大きい ほうを用いる例となっています。ここでは、フレーム計算ではなく、杭頭ピンでのチ ャンの式を用意しました。(無限長杭かつ単層の条件であれば同等です。)

参照:『港湾構造物設計事例集(平成19年 改訂版)(上)平成19年3月』P.5-61

参照:『港湾の施設の技術上の基準・同解説(下) 平成19年7月』P.626

[上載荷重の考慮]

控え組杭に作用する上載荷重の有無を切り替えることが可能です。「考慮する」かあ るいは、「考慮しない」のどちらかを選択します。

[主働崩壊面の立ち上げ位置]

前面矢板と控え工の間の距離の計算に用いる主働崩壊面の立ち上げ位置を設定しま す。根入れの計算法が「フリーアースサポート法」の場合、「設計海底面」、「仮想海底面」から、 「たわみ曲線法」の場合、「設計海底面」、「曲げモーメント第一ゼロ点」、「曲げモーメ ント第一ゼロ点もしくは、設計海底面のうち深いほう」から選択します。「ロウの方法」 の場合、設計海底面固定となります。

[コンクリートの単位体積重量]

上部工の重量を算出するためコンクリートの単位体積重量を入力します。

[ヤング係数]

使用する杭のヤング係数を入力します。入力値が0.0の場合以下の値を採用します。

 $E = 200 k N / mm^2$

[粘性土 C->N値計算時に使用する式 [qu(N/mm²)=N/X] の分母の値(X)]

支持力の計算で、粘性土のN値が0.0の場合に使用します。粘性土のN値を粘着力か ら計算する場合の式の内、qu(N/mm²)=N/X式で使用する分母の値を入力します。通常 40.0~80.0を入力します。

参照:『鋼管杭協会,鋼矢板 設計から施工まで 2014年』P102

[地盤反力係数]

組杭の計算方法が「杭の軸方向・軸直角方向抵抗を考慮して計算」の場合に指定しま す。入力方法を選択し、必要な値を入力してください。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.710

尚、地盤反力係数の算出式が道路橋示方書による方法の場合、係数αの指定が可能で す。

参照:『道路橋示方書・同解説Ⅳ下部構造編 平成24年3月』P.285

[杭頭軸方向ばね係数]

組杭の計算方法が「杭の軸方向・軸直角方向抵抗を考慮して計算」の場合に指定しま す。杭頭軸方向ばね係数の計算方法を「支持杭」、「摩擦杭(粘性土)」、「摩擦杭 (砂質土)のいずれかの方法で指定します。押し込み杭が「支持杭」の場合、一般に 引き抜き杭は、「摩擦杭」を選択します。

尚、杭頭軸直角方向ばね係数は、杭頭ヒンジで地上部がないものとして計算します。

参照:『港湾の施設の技術上の基準・同解説(上) 平成11年4月』P.476

[崩壊面の交差位置]

前面矢板と控え工の間の距離を計算する場合の主働崩壊面と受働崩壊面の交わる位置を「タイ材位置」、「地表面位置」から選択します。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.1088~P.1089 参照:『漁港・漁場の施設の設計参考図書 2015年』P.526

第2タブ(控え組杭ー杭条件)

が 加 加 加 た た た 板 式 係 船 岸 6 Ver. ファイル(F) オプ ション(O) デー・	1.0.0 - サンプル: 7入力(I) 計算(C	データ港湾事() ヘルプ(H)	列集H11					_ • •
	9	,						
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□								
条件 税	条件 支	持力条件						
	下端高(n) 外径(mm)	厚さ(mm)	断面二次 モーメント I (cm4)	断面係数 Z (cm3)	材質	傾斜角 (度)	
押し	込み杭 -25	00 600.0	9.0	73000	2430	SKK400	20.0	
	抜き杭 -27	50 700.0	9.0	116000	3330	SKK400	20.0	

[鋼管杭]

鋼管杭の寸法・材質及び、下端の高さなどを指定します。入力されたデータから腐食前のI、Zを自動計算する場合は、I、Zの項目は入力しないでください。 メーカーカタログの値などを使用する場合、I、Zの項目にデータを入力してください。

腐食後の断面係数は自動計算します。

[H形鋼杭]

H形鋼杭の寸法・材質及び、下端の高さなどを指定します。入力されたデータから腐 食前のI、Zを自動計算する場合は、I、Zの項目は入力しないでください。 メーカーカタログの値などを使用する場合、I、Zの項目にデータを入力してください。

腐食後の断面係数は自動計算します。

- ※ 土層で支持層を設定する場合、杭の下端高は必ずその支持層内に収まるよう設定してください。矛盾がある場合、エラーメッセージが表示されます。
- ※ 傾斜角は、押し込み杭・引き抜き杭どちらについても必ず正の値を設定してください。
- ※ 画面は、鋼管杭指定画面です

第3タブ(控え組杭-支持力条件)

1 控え矢板式係船岸6 Ver.1.0.6 - サンプルデータ港湾事例集H11	—		×
ファイル(F) オブション(O) データ入力(I) 計算(C) ヘルブ(H)			
(Ⅲ) 10 10 10 10 10 10 10 10 10 10 10 10 10		港湾·	渔港
条件 杭条件 支持力条件			
「打設工法」 ○ 打ち込み杭 ○ 中提り枝(道路橋示方書H24年以前)			
 ○ 中振り杭(道路橋示方書H29年) ○ 埋込み杭 ◇(漁営構造物設計ガイド平成6年度版) 			
周面摩捺の算出に用いる長さ ○ 実寸長 ○ 鉛直方向長さ(H27杭基礎設計便覧)			
打ち込み杭			
押し込み杭 N1:杭先端位置でのN値 50.0 N2:杭先端から上方へ杭径の4倍までの平均値 40.0 α:杭の閉塞率(開端杭で)はα=1) 100			

[打設工法]

打設工法を「打ち込み杭」、「中堀り杭(道路橋示方書H24年以前)」、「中堀り杭 (道路橋示方書H29年)」、「埋込み杭(漁港構造物設計ガイド平成6年度版)」の中 から選択します。指定した工法による支持層データを入力します。部分係数法では、 「中堀り杭(道路橋示方書H24年以前)」及び「埋込み杭(漁港構造物設計ガイド平 成6年度版)」の選択は不可となります。尚、各打設工法別の入力項目は、打設工法 を選択すると、表示され入力可能となります。画面は、打ち込み杭の場合の画面です。

参照:『港湾の施設の技術上の基準・同解説(中) 平成30年5月』P.693~

参照:『漁港・漁場の施設の設計参考図書 2015年』P.258~

参照:『道路橋示方書・同解説Ⅳ下部構造編 平成24年3月』P.387~

参照:『道路橋示方書・同解説Ⅳ下部構造編 平成29年11月』P.238~

[周面摩擦の算出に用いる長さ]

周面摩擦力の計算に用いる杭の長さを「実寸長」、「鉛直方向長さ(H27杭基礎設計 便覧)」から選択します。次図のようになります。

参照: 『杭基礎設計便覧 平成27年3月』P.335
[打ち込み杭]

.

N1:杭先端位置でのN値

- N2: 杭先端から上方へ杭径の4倍までの平均N値を入力します。
- α :杭の閉塞率を入力します。閉端杭では通常 α =1.0とします。

[埋込み杭: (漁港構造物設計ガイド平成6年度版)]

 η :開端杭の閉塞効力(閉端杭では η =1)

N:先端抵抗N値(杭先端より下へ1.0d~上へ4.0dの間の実測N値の平均)を入力し ます。本項目は、許容応力度法でのみ有効です。

[中堀り杭:(道路橋示方書H24年以前)]

杭の先端処理法を選択します。指定した方式により、杭先端の極限支持力度(qd)の 算定法を変更します。

最終打撃方式 gd=300/5·N·(支持層の換算根入れ)/(杭径)

ad=150•N

- セメントミルク噴出攪拌方式(先端砂層)
- セメントミルク噴出攪拌方式(先端砂礫層) ad=200・N
- コンクリート打設方式(砂礫層及び砂層)
 qd=3000
- コンクリート打設方式(良質な砂礫層)
 qd=5000
- コンクリート打設方式(硬質粘性土層)
 qd=3・qu
- 最終打撃方式

(支持層の換算根入れ)/(杭径)、先端地盤平均N値を入力します。

セメントミルク噴出攪拌方式(先端砂層)、(先端砂礫層) <u>杭先端位置のN値</u>を入力します。

コンクリート打設方式(砂礫層及び砂層)、(良質な砂礫層) この方式の場合、入力はありません。

コンクリート打設方式(硬質粘性土層)

<u>一軸圧縮強度qu</u>を入力します。

[杭周面に働く最大周面摩擦力度の推定]

打設工法が、「中堀り杭:(道路橋示方書H24年以前)」の場合に、支持力及び負の 周面摩擦の最大値の算定式における係数を設定します。 道路橋示方書 平成8年に記載されている算定式の係数と 参照:『道路橋示方書・同解説IV下部構造編 平成8年12月』P.336

道路橋示方書 平成14年に記載されている算定式の係数との2種類が選択できます。 参照:『道路橋示方書・同解説IV下部構造編 平成14年3月』P.362

参照:『道路橋示方書・同解説Ⅳ下部構造編 平成24年3月』P.395

[中堀り杭: (道路橋示方書H29年)]

部分係数を考慮した計算の場合に選択が可能となります。杭の先端処理法を選択し、 杭先端位置のN値を入力します。指定した方式により、杭先端の極限支持力度(qd) の算定法を変更します。

qd=220 · N

- 最終打擊方式(粘性土層) qd=90·N
- 最終打撃方式(砂・砂れき層)
 qd=130·N
- ・ セメントミルク噴出攪拌方式(砂層)
- セメントミルク噴出攪拌方式(砂れき層)
 qd=250・N

4-6. 腐食条件

前面矢板、控え工の腐食条件(腐食速度、耐用年数など)を指定します。 腐食の設定画面は、1タブ(画面)の構成となります。ただし、モード(<u>港湾・漁港モー</u> <u>ド、河川モード</u>)により画面が変わります。

第1タブ(腐食)-港湾・漁港モード

ファイル(F) オブション(O) データ入力(I) 計算(C) ヘルブ(H)	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	<mark>港湾·漁港</mark>
前面矢板 「腐食速度(mm/年)」 「腐食速度(mm/年)」 「腐食速度(mm/年)」 「腐食速度(mm/年)」 「腐食液の断面性能」 「腐気防食 「防食(ない)」 「防食(ない)」 「防食(ない)」 「「防食(ない)」 「「防食(ない)」 「防食(本)」 「「防食(本)」」 「「「「「」」」 「「」」」 「「」」」 「」」」 「「」」」 「「」」」 「」」」 「」」」 「」」」 「」」」 「「」」」 「「」」」 「」」」 「」」」 「」」」 「「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」 「」」」 「」」」 「」」」 「」」 「」」 「」」 「」」」 「」」 「」」」 「」」」 「」」 「」」 「」」 「」」」 「」」 「」」 「」」 「」」」 「」」」 「」」 「」」 「」」」 「」」」 「」」 「」」 「」」」 「」」」 「」」 「」」 「」」 「」」	
控え工 タイ材 腐食速度(mm/年) 0.020 耐用年数(年) 50.0 大板の低減率(%) 100 ※指定した矢板が追加矢板データの場合、矢板の低減率により腐食後の断面性能を計算します。 50.0	
	1.

[前面矢板]

前面矢板の腐食速度、耐用年数を入力します.電気防食を行う場合、電気防食率と指 定した耐用年数の期間中に電気防食が有効と思われる期間を電気防食有効年数に入 力します。

「矢板の低減率」は、前面矢板形式が「矢板任意」の場合で、追加した鋼矢板データ を選択した場合に有効です。追加した綱矢板データは、本低減率により、腐食後の矢 板の断面性能を計算します。システム内部に保持している既存の鋼矢板データの場 合は、腐食速度と耐用年数から腐食しろを計算して腐食後の矢板の断面性能を算出 します。

尚、矢板の低減率が100の場合、全く腐食しないことを表します。したがって、0が入 力されている場合は、エラーメッセージが表示されますので、注意してください。

[控え工]

控え工の腐食速度、耐用年数を指定します。

「矢板の低減率」は、控え工形式が「矢板任意」の場合で、追加した綱矢板データを 選択した場合に有効です。追加した綱矢板データは、本低減率により、腐食後の矢板 の断面性能を計算します。システム内部に保持している既存の鋼矢板データの場合 は、腐食速度と耐用年数から腐食しろを計算して腐食後の矢板の断面性能を算出し ます。

尚、矢板の低減率が100の場合、全く腐食しないことを表します。したがって、0が入 力されている場合は、エラーメッセージが表示されますので、注意してください。

[鋼矢板の腐食後の断面性能]

前面矢板及び、控え工が鋼矢板の場合の腐食後の断面性能の計算方法を指定します。 鋼矢板を用いて検討処理を行う場合に有効となります。ここでは、以下の2つの中か ら選択します。通常は、得られた断面性能低減率を公称断面性能(I₀, Z₀)に乗じるた め、②を選択します。

参照:『鋼矢板 設計から施工まで 2014』P.15

- ① 腐食後の断面係数から算出 (計算方法は、商品概説書に記述)
- ② 残存断面性能から算出 (残存断面性能とは、Z/Zoを指します)

[断面性能有効桁数]

腐食後の鋼矢板の断面性能の有効桁数を指定します。0を指定すれば、小数点以下1 桁目を丸め、鋼矢板の断面性能とします。0以外の値を入力すれば、その桁で断面二 次モーメント及び、断面係数を切り捨てます。

[腹おこしの腐食速度・耐用年数]

腹おこし材の腐食速度・耐用年数を前面矢板側・控え工側についてそれぞれ指定します。腐食速度あるいは耐用年数が0.0の場合は腐食を考慮しません。

[タイ材の腐食速度・耐用年数]

タイ材の腐食速度・耐用年数を入力します。腐食速度あるいは耐用年数が0.0の場合 は腐食を考慮しません。タイ材の材質がタイロッドの時のみ有効となります。

第1タブ(腐食)-河川モード

	H11	
		्राम
前面矢板 - 席食しろ(mm) 水側 <u>5.0</u> 陸側 1.0	─綱矢板の腐食後の断面性能 ──	
	断面性能有効析数 0	
	腹おこし 前面矢板側 腐食しろ(mm) 0.0	
矢板の低減率(%) 100 ※指定した矢板が追加矢板データの場合、矢板の低減 率により腐食後の断面性能を計算します。	控え工作 席食しろ(mm) 0.0	
控え工 席食しる(mm) 気.0 矢板の低減率(%) 「100 ※指定した矢板が追加矢板データの場合、矢板の低減 率により腐食後の断面性能を計算します。	タイ材 腐食しろ(mm) 1.5	

[前面矢板]

前面矢板の腐食しろを入力します.

「矢板の低減率」は、前面矢板形式が「矢板任意」の場合で、追加した鋼矢板データ を選択した場合に有効です。追加した綱矢板データは、本低減率により、腐食後の矢 板の断面性能を計算します。システム内部に保持している既存の鋼矢板データの場 合は、与えられた腐食しろから腐食後の矢板の断面性能を算出します。

尚、矢板の低減率が100の場合、全く腐食しないことを表します。したがって、0が入 カされている場合は、エラーメッセージが表示されますので、注意してください。

[控え工]

控えエの腐食しろを指定します。

「矢板の低減率」は、控え工形式が「矢板任意」の場合で、追加した綱矢板データを 選択した場合に有効です。追加した綱矢板データは、本低減率により、腐食後の矢板 の断面性能を計算します。システム内部に保持している既存の鋼矢板データの場合 は、与えられた腐食しろから腐食後の矢板の断面性能を算出します。

尚、矢板の低減率が100の場合、全く腐食しないことを表します。したがって、0が入 力されている場合は、エラーメッセージが表示されますので、注意してください。

[断面性能有効析数]

腐食後の鋼矢板の断面性能の有効桁数を指定します。0を指定すれば、小数点以下1 桁目を丸め、鋼矢板の断面性能とします。0以外の値を入力すれば、その桁で断面二 次モーメント及び、断面係数を切り捨てます。

[腹おこしの腐食しろ]

腹おこし材の腐食しろを前面矢板側・控え工側についてそれぞれ指定します。

[タイ材の腐食しろ]

タイ材の腐食しろを入力します。タイ材の材質がタイロッドの時のみ有効となりま す。

<u>4-7.土層条件</u>

陸側土層、海側土層、裏込め土層、置換え土層(土質定数など)を指定します。 土層の設定画面は、4タブ(画面)の構成となります。画面切り替えはタブ(<u>陸側、海側</u>、 <u>裏込め形状</u>、置換え土層)をクリックします。

第1タブ(陸側)

【控え組杭以外】

				, (,											
□ 133 大冬供															
#12#CELL)) 地震時	前面矢根	反 外 腹材 扌	 加 加 空え工 腐食 		任意土圧	● 他外力 模式		港湾·渔港						
陸的		海(則 裏ì	込め形状	置換え土	層									
No	層上限の 標高(m)	土質	単位体積 <u>重</u> 量 [湿潤] (kN/m3)	単位体積 <u>重</u> 量 [飽和] (kN/m3)	内部摩 擦角(度)	粘着基準面で の粘着力 CO(kN/m2)	粘着勾配 K								
1	3.00	砂質土	18.000	20.000	40.0										
2	-8.10	砂質土	18.000	20.000	34.0										
3	-11.00	砂質土	18.000	20.000	38.0										
4	-17.50	粘性土	16.300	16.300		60.000	0.000								
5	-24.50	粘性土	17.700	17.700		150.000	0.000								
		-													
空井橋	.= т														
□□○扮	ξΛΙ														
0置	き換えなし														
ⓒ 悪	きゆえあけ														
(e mit	2177/00/0														

【控え組杭】

画 画 画 画 画 画 通 画 通 1 通 1 <th1< th=""> 1 <th1< th=""> 1 1 1 1</th1<></th1<>													
No	層上限の 標高(m)	土質	単位体積 <u>重</u> 量 [湿潤] (kN/m3)	単位体積 <u>重</u> 量 [跑和] (kN/m3)	内部摩 擦角(度)	粘着基準面で の粘着力 C0(kN/m2)	粘着勾配 K	N(直(回)	負の周面摩擦 [押し込み杭]	負の周面摩擦 [5]き抜き杭]			
1	3.00	砂質土	18.000	20.000	40.0			5.0	支O負×	支O負×			
2	-8.10	砂質土	18.000	20.000	34.0			6.0	支〇負×	支O負×			
3	-11.00	砂質土	18.000	20.000	38.0			21.0	支〇負×	支O負×			
4	-17.50	粘性土	16.300	16.300		60.000	0.000	3.0	支O負×	支O負×			
5	-24.50	粘性土	17.700	17.700		150.000	0.000	40.0	支持層	支持層			
置き置 C 置 の 置	奥え土												

[層上限の標高]

土層の上限の高さを入力します。第1層目の高さが、地表面天端高となります。最大 で、上部工天端高と同位置となりますが、必ずしも上部工天端高と同位置である必要 はありません。

[土質]

砂質土、粘性土の区分を指定します。砂質土の場合、内部摩擦角が入力可能となりま す。粘性土の場合、粘着力が入力可能となります。

「土圧0」フラグを選択した場合には、土圧強度を強制的に0.0と設定します。その時の崩壊角の取り扱いについては、明確にされていないため、現在のところ便宜上砂質 土の諸元を用いて計算しています。ご注意ください。

[単位体積重量]

土の単位体積重量(湿潤、飽和)を入力します。水中の単位体積重量(有効)は、以 下の方法によりプログラム内部で算出します。

(港湾・漁港モード)(河川モード)飽和重量より-10.0したものを使用します。(河川モード)湿潤重量より-9.0したものを使用します。

尚、(河川モード)の場合、飽和重量は、見かけの震度の算出式[K '=γ/(γ-10) k]で用いることがありますので、浮力の10.0を考慮した値を設定して下さい。

[内部摩擦角]

土質が「砂質土」の場合、内部摩擦角を入力します。

[C₀, K]

土質が「粘性土」の場合、粘着基準面位置での粘着力C₀と粘着勾配Kを入力します。

[N値] 控え工の種類が「控え組杭」の場合

支持力計算に使用する各土層のN値を入力します。土質が砂質土の場合で、N値が 0.0の場合は、エラーメッセージが表示されます。粘性土の場合でN値が0.0の場合 は、粘着力からN値を換算します。(詳細は、商品概説書を参照してください。)

[負の周面摩擦(押込み)(引抜き)]控え工の種類が「控え組杭」の場合

押し込み杭、引き抜き杭毎に、支持力/負の周面摩擦の検討において、付着力を考慮 する土層か考慮しない土層かのスイッチの設定が可能です。

押し込み杭に対しては、負の周面摩擦力が作用するかどうかを指定することができ ます。

また、各杭に対して、支持層フラグを指定します。尚、負の周面摩擦の検討を行う場 合は、支持層フラグが必須です。支持層フラグ設定する場合は、押し込み杭、引き抜 き杭に対して1つのみ必要です。

前述した、控え杭の根入れ深度と一致する土層に対して支持層フラグを設定してく ださい。それ以外の土層を設定するとエラーメッセージが表示されます。

支持層フラグを設定しない場合には、摩擦杭として検討します。

以	以下に設定できるスイッチについて説明します。										
	押し込み杭										
1.	支〇負×	支持力の検討では考慮し、負の周面摩擦力の検討では考慮しません。									
2.	支〇負〇	支持力及び、負の周面摩擦力の検討で考慮します。									
3.	支持地盤	支持地盤であることを指定します。									
4.	支×負×	支持力及び、負の周面摩擦力の検討のどちらでも考慮しません。									
5.	支×負〇	支持力の検討では考慮せず、負の周面摩擦力の検討で考慮します。									
		引き抜き杭									
1.	支〇負×	支持力の検討では考慮し、負の周面摩擦力の検討では考慮しません。									
2.	支持地盤	支持地盤であることを指定します。									
3.	支×負×	支持力及び、負の周面摩擦力の検討のどちらでも考慮しません。									

[置換え土]

裏込め形状を指定し、置換え土を指定する場合は、「置換え土あり」を選択します。 そうでない場合は、「置換え土なし」を選択してください。

「置換え土あり」の場合は、裏込め土を含む土層データが「陸側土層」タブで入力す るデータとなります。控え工側の土層データは、「置換え土層」のデータとなります。 土層の入力方法には、一定の制限があります。次図を参考にして入力を行ってください。

- ※ 置換え土ありを指定した場合、控え工に関する土質条件は、本項目ではなく後に でてくる置換え土層データのものを用います。
- ※ 置換え土ありを指定した場合、計算内部で使用する土層データは、次図のように なります。入力に注意してください。

第2タブ(海側)

「日」 ファイル	記 (E)	板式係船岸 オプション(O)	6 Ver.1.0 ₹°-4λ).0 - サンプルラ カ(I) 計算(C	データ港湾事例:) ∧ルプ(H)	集H11							
	2) E	3 📃 🗐	18	?	, (,								
基2	∰] ▶条件	》 地震時	前面矢机	反 外化腺材 打	 加 加 空え工 腐食 		任意土庄	他外力 模式			<mark>港湾・漁港</mark>		
F													
	No	層上限の 標高(m)	土質	単位体積 <u>車</u> 量 [显潤] (kN/m3)	単位体積 <u>車</u> 量 [跑和] (kN/m3)	内部摩 擦角(度)	粘着基準面で の粘着力 CO(kN/m2)	粘着勾配 K					
	1	-12.60	砂質土	18.000	20.000	38.0							
	2	-17.50	粘性土	15.300	15.300		50.000	0.000					
	Ů	21.00	10122	11.100			100.000	0.000					
	L h e	地役市市区	要#/LNL/m	0)	0.0	_							
	Kh:	電盪以力開業	#XUK IN/ M	0)	10.0								
											1.		

[層上限の標高]

土層の上限の高さを入力します。第1層目の高さが、前面の設計海底面の高さとなり ます。「基本条件」-「高さ条件1」で設定した前面海底面高が常時・地震時・津波 時で異なる場合は、その内で最も高い位置の値を設定してください。

[土質]

砂質土、粘性土の区分を指定します。砂質土の場合、内部摩擦角が入力可能となりま す。粘性土の場合、粘着力が入力可能となります。

[単位体積重量]

土の単位体積重量(湿潤、飽和)を入力します。水中の単位体積重量(有効)は、以 下の方法によりプログラム内部で算出します。

(港湾・漁港モード)(河川モード)飽和重量より-10.0したものを使用します。(河川モード)湿潤重量より-9.0したものを使用します。

尚、(河川モード)の場合、飽和重量は、見かけの震度の算出式[K '=γ/(γ-10) k]で用いることがありますので、浮力の10.0を考慮した値を設定して下さい。

[内部摩擦角]

土質が「砂質土」の場合、内部摩擦角を入力します。

[C₀, K]

土質が「粘性土」の場合、粘着基準面での粘着力C₀と粘着勾配Kを入力します。

[kh:地盤反力係数]

弊社販売ソフトの1つである、斜面の安定計算システムの機能である「すべり面が矢板を通る場合」の検討に必要なデータを出力するために入力します。データは、シス テムフォルダにEXP_ENK*.DATというファイル名で作成されます。

第3タブ(裏込め形状)

[裏込め天端高]

裏込め土の天端の高さを入力します。陸側土層・置換え土層共に同じ高さが必要で す。

[裏込め下端高]

裏込め土の下端の高さを入力します。陸側土層・置換え土層共に同じ高さが必要で す。

[裏込め天端幅]

裏込め土の天端の幅を入力します。この幅と勾配から、下端位置の幅が決定します。

[裏込め勾配]

裏込め土の勾配を入力します。この勾配と裏込め天端幅から、下端位置の幅が決定します。

第4タブ(置換え土層)

【控え組杭以外】

6	控え矢材	版式係船岸	6 Ver.1.0).0 - サンプルテ	データ港湾事例:	集H11						
77	1⊮(F)	オプション(O)	データ入	.力(I) 計算(C) ∿⊮7°(H)							
D) 🛩 🛯	8 🧕 🖩	8	?								
뷺	「国 基本条件))) 地震時	前面矢机	反 外·腹材 打	 加 空え工 腐食 		任意土圧	が 他外力 模式		港湾·漁港		
	陸(11	海側	則裏	込め形状	置換え土	R					
	No	層上限の 標高(m)	土質	単位体積 <u>重</u> 量 ^[显潤] _(kN/m3)	単位体積 <u>重</u> 量 [飽和] _(kN/m3)	内部摩 擦角(度)	粘着基準面で の粘着力 CO(kN/m2)	粘着勾配 K				
	1	3.00	砂質土	18.000	20.000	27.5						
	2	-8.10	砂質土	18.000	20.000	34.0						
	3	-11.00	砂質土	18.000	20.000	38.0						
	4	-17.50	粘性土	16.300	16.300		60.000	0.000				
		-24.50	和正工	17.700	17.700		150.000	0.000				
										11.		

【控え組杭】

正 二 二 二 二 点<												
No	層上限の 標高(m)	土質	単位体積 <u>重</u> 量 [湿潤] (kN/m3)	単位体積 <u>重</u> 量 [飽和] (kN/m3)	内部摩 擦角(度)	粘着基準面で の粘着力 CO(kN/m2)	粘着勾配 K	N値(回)	負の周面摩擦 [押し込み杭]	負の周 面摩 擦		
1	3.00	砂質土	18.000	20.000	27.5			5.0	支〇負×	支O負×		
2	-8.10	砂質土	18.000	20.000	34.0			6.0	支O負×	支O負×		
3	-11.00	砂質土	18.000	20.000	38.0			21.0	支O負×	支O負×		
4	-17.50	粘性土	16.300	16.300		60.000	0.000	3.0	支O負×	支O負×		
5	-24.50	粘性土	17.700	17.700		150.000	0.000	40.0	支持層	支持層		

[層上限の標高]

土層の上限の高さを入力します。第1層目の高さが、地表面天端高となります。最大 で、上部工天端高と同位置となりますが、必ずしも上部工天端高と同位置である必要 はありません。しかしながら、前述した陸側土層の高さと一致している必要がありま す。

[土質]

砂質土、粘性土の区分を指定します。砂質土の場合、内部摩擦角が入力可能となりま す。粘性土の場合、粘着力が入力可能となります。尚、「土圧0」フラグは選択でき ません。

[単位体積重量]

土の単位体積重量(湿潤、飽和)を入力します。水中の単位体積重量(有効)は、以 下の方法によりプログラム内部で算出します。

(港湾・漁港モード)(河川モード)飽和重量より-10.0したものを使用します。(河川モード)湿潤重量より-9.0したものを使用します。

尚、(河川モード)の場合、飽和重量は、見かけの震度の算出式[K '=γ/(γ-10) k]で用いることがありますので、浮力の10.0を考慮した値を設定して下さい。

[内部摩擦角]

土質が「砂質土」の場合、内部摩擦角を入力します。

[C₀, K]

土質が「粘性土」の場合、粘着基準面での粘着力C₀と粘着勾配Kを入力します。

[N値] 控えエの種類が「控え組杭」の場合

支持力計算に使用する各土層のN値を入力します。土質が砂質土の場合で、N値が 0.0の場合は、エラーメッセージが表示されます。粘性土の場合でN値が0.0の場合 は、粘着力からN値を換算します。(詳細は、商品概説書を参照してください。)

[負の周面摩擦(押込み)(引抜き)]控え工の種類が「控え組杭」の場合

押し込み杭、引き抜き杭毎に、支持力/負の周面摩擦の検討において、付着力を考慮 する土層か考慮しない土層かのスイッチの設定が可能です。

押し込み杭に対しては、負の周面摩擦力が作用するかどうかを指定することができ ます。

また、各杭に対して、支持層フラグを指定します。尚、負の周面摩擦の検討を行う場 合は、支持層フラグが必須です。支持層フラグ設定する場合は、押し込み杭、引き抜 き杭に対して1つのみ必要です。

前述した、控え杭の根入れ深度と一致する土層に対して支持層フラグを設定してく ださい。それ以外の土層を設定するとエラーメッセージが表示されます。

支持層フラグを設定しない場合には、摩擦杭として検討します。

以下に設定できるスイ	ッチについて説明します。

		押し込み机
6.	支〇負×	支持力の検討では考慮し、負の周面摩擦力の検討では考慮しません。
7.	支〇負〇	支持力及び、負の周面摩擦力の検討で考慮します。
8.	支持地盤	支持地盤であることを指定します。
9.	支×負×	支持力及び、負の周面摩擦力の検討のどちらでも考慮しません。
10.	支×負〇	支持力の検討では考慮せず、負の周面摩擦力の検討で考慮します。
		引き抜き杭
4.	支〇負×	支持力の検討では考慮し、負の周面摩擦力の検討では考慮しません。
5.	支持地盤	支持地盤であることを指定します。
6.	支×負×	支持力及び、負の周面摩擦力の検討のどちらでも考慮しません。

- ※ 本土層を入力した場合、控え工に関する土質条件は、前述した陸側土層のデータ ではなく、本データのものを用います。
- ※ 計算内部で使用する土層データは、次図のようになります。土層の入力方法に は、一定の制限があります。次図を参考にして入力を行ってください。

基本条件画面の土圧強度の設定方法が「入力値により設定」の場合に任意土圧を指定しま す。

任意土圧の設定画面は、5タブ(画面)の構成となります。画面切り替えはタブ(<u>陸側土</u> <u>層、海側土層、置換え土層、控え版-主働側、控え版-受働側</u>)をクリックします。

6	控えタ	長板す	∜係船岸6 V	er.1.0.0 - (任意土圧(テスト	~)					- • ×
77	1⊮(F)	オブ	° ໂ∋∋)(O) 7	゙-タ入力(I)	計算(C) ヘル	л°(Н)					
	。 (回) (本条)(陸側	₽ <u>+</u> !: !:±		 ② ② ③ ③ ③ ③ ③ ③ (M) (M)<th> ・腹材 ・腹材 と腹対 を決え </th><th>- 福食 上層 控え間</th><th> 土層 [任 页-主働側]</th><th><u>意十</u>田 他 控え版-受</th><th>ジョ 様式図 予約 模式図</th><th></th><th>港湾·漁港</th>	 ・腹材 ・腹材 と腹対 を決え 	- 福 食 上層 控え間	 土層 [任 页-主働側]	<u>意十</u> 田 他 控え版-受	ジョ 様式図 予約 模式図		港湾·漁港
				名時	Y		地震時		γ	津波時]
	<u>»</u>	>高さ No	"情報取得 層上限の 標高(m)	層下限の 標高(m)	層上限の土圧 強度(kN/m2)	層下限の土圧 強度(kN/m2)	主働崩壊 角(度)	受働崩壊 角(度)			
	-	1	3.00	1.00	5.827	12 818	16.6	0.0			
		2	1.00	-8.10	12.818	30.490	16.6	0.0			
		3	-8.10	-11.00	33.207	39.340	17.4	0.0	1		
		4	-11.00	-17.50	39.340	53.088	17.4	0.0]		
		5	-17.50	-22.60	131.001	163.131	45.0	0.0			
		6	-22.60	-24.50	163.131	175.100	45.0	0.0			
			-24.50	-30.00		3/.451	45.0				

第1タブ (陸側土層)

各土層の上限・下限毎に、土圧強度・崩壊角を入力します。尚、陸側の場合、前面矢 板と控え工の間の距離(傾斜がない場合のタイ材長さ)を計算するために主働・受働 の崩壊角が必要です。

高さ情報取得ボタンを押せば、「土層」ー「陸側」の高さデータを取得します。

※ 土層は、「土層」-「陸側」のデータが基準となっています。基準のデータと比較して不足する土層については、内部で分割し、その土層を挟む土圧強度で直線補間をかけ土圧強度を算出します。従って、土圧が変化する位置(たとえば、水位レベル)は、必ず土層を挿入し、土圧強度を入力してください。

第2タブ(海側土層)

6												
77	²4μ(F) オノション(U) デー୬人ノJ(I)) ≣T≢	‡(C) ∿⊮	(H)								
		1						港湾·渔港				
	基本条件 地震時 前面天板 91 陸側土層 海側土層	们版材	<u> 控え工</u> 置換え土層	<u> 橋貫</u> 構 支 た た た た た た た た た	<u></u> 任意 版-主働側	注圧 <u>他外刀</u> 控え版-受働側						
		,		-	地震時		· 注波時					
	≫高さ情報取得	No	層上限の 標高(m)	層下限の 標高(m)	層上限の土圧 強度(kN/m2)	層下限の土圧 強度(kN/m2)						
		1	-12.60	-17.50	0.000	370.603						
		2	-17.50	-24.50	169.001 393.101	213.101 435.451						
			00,72									

各土層の上限・下限毎に、土圧強度を入力します。 高さ情報取得ボタンを押せば、「**土層」-「海側」**の高さデータを取得します。

※ 土層は、「土層」-「海側」のデータが基準となっています。基準のデータと比較して不足する土層については、内部で分割し、その土層を挟む土圧強度で直線補間をかけ土圧強度を算出します。従って、土圧が変化する位置(たとえば、水位レベル)は、必ず土層を挿入し、土圧強度を入力してください。

第3タブ(置換え土層)

161 77	控え矢板式係船岸6 Ver.1.0.0 イル(F) オプション(O) データ入力(- 任意土 (I) 計算	圧(テスト) ፤(C) ヘルプ	(H)				- • •	
Ē	陸側土層海側土層		置換え土層	 控え	版−主働側		受働側		
	常時				地震時	5	津波時		
	>>高さ情報取得	No	<u>層上</u> 限の 標高(m) 3.00	層下限の 標高(m) 1.00	主働崩壊 角(度) 63.2	受働崩壊 角(度) 31.6			
		2	1.00	-8.10	63.2 61.9	31.6 31.0			
		4	-11.00	-17.50	61.9	31.0			
		5	-17.50	-22.60	45.0	22.5			
		6	-22.60	-24.50	45.0	22.5			
			-24.50	-30.00	45.0	22.5			
	L								
<u> </u>									

置換え土層を考慮する場合、各土層の上限・下限毎に、崩壊角を入力します。この崩 壊角は、前面矢板と控え工の間の距離(傾斜がない場合のタイ材長さ)を計算するた めに主働・受働の崩壊角が必要です。

高さ情報取得ボタンを押せば、「土層」「「置換え土層」の高さデータを取得します。

※ 土層は、「**土層」**--「置換え土層」のデータが基準となっています。基準のデータと 比較して不足する土層については、内部で分割し、崩壊角を複写します。

第4タブ(控え版ー主働側)

18	聞 控え矢板式係船岸6 Ver.1.0.0 - 任意土圧(テスト) □ □ □ □ □ □ □ □ □ □							
D		(1) EI /	+(C) '00	(1)				
t,	□□	₩ 例・腹材	「記 控え工	<mark>値</mark> 腐食	1 土層 任意	▲	模式図	<mark>港湾・漁港</mark>
F	陸側土層 海側土層	' Ý	置換え土層	/ 控え	版-主働側	控え版-受働側]	
	常時				地震時		津波時	
	≫高さ情報取得	No	層上限の 標高(m)	層下限の 標高(m)	層上限の土圧 強度(kN/m2)	層下限の土圧 強度(kN/m2)		
		1	3.00	1.00	8.026	18.138		
		2	1.00	-8.10	18.138	43.697		
		3	-8.10	-11.00	46.833	55.563		
		4	-17.50	-17.00	00.003	175,101		
		6	-22.60	-24.50	175 788	188 357		
		7	-24.50	-30.00	8.357	52.525		
		-						
1								//_

控え工の形式が「控え版」の場合、控え版の安定検討を行うための主働側の土圧強度 を各土層の上限値・下限値で入力します。 高さ情報取得ボタンを押せば、「**土層」--「陸側」**もしくは、置き換え土層を考慮して

高さ情報取得ホタンを押せば、「工**増」」「陸側」**もしくは、直ざ換え工層を考慮している場合には、「**土層」」「置換え土層」**から、基準となる高さデータを取得します。

※ 土層は、置換え土を考慮しない場合は「土層」-「陸側」を基準とし、置換え土を考慮する場合は、「土層」-「置換え土層」のデータを基準とします。基準のデータと比較して不足する土層については、内部で分割し、その土層を挟む土圧強度で直線補間をかけ土圧強度を算出します。従って、土圧が変化する位置(たとえば、水位レベル)は、必ず土層を挿入し、土圧強度を入力してください。

第5タブ(控え版ー受働側)

○ ○	10	┃ 控え矢板式係船岸6 Ver.1.0.0 - ァイル(F) オプション(O) データ入力(I	任意土	圧(テスト) 算(C) ヘルプ	(H)				- • •
近天振 小服材 投入工 備食 上層 任業土圧 使外力 模式図 浸汚・漁烫 陸間土層 海側土層 盗換え土層 注え広ヶ主像制 陸天広子変働制 陸天広子変働制 <	Ľ							·	
陸側土層 選換之里 控え版-主動側 陸記版-受動側 第時 地震時 津波時 第時 2 80 100 8.026 1 3.00 1.00 8.026 2 1.00 -8.10 18.138 2 1.00 -8.10 18.138 4 -11.00 46.833 55.563 5 -17.50 55.563 75.131 5 -17.50 -22.60 142.051 175.788 6 -22.60 -24.50 175.788 188.357 7 -24.50 -30.00 8.357 52.525 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </th <th></th> <th>武学 武学 武学 二学 二学 二学 二学</th> <th><mark>∭</mark> ∀・腹材</th> <th> ・ ・</th> <th>腐食</th> <th></th> <th>▲</th> <th>模式図</th> <th><mark>港湾・漁港</mark></th>		武学 武学 二学 二学 二学 二学	<mark>∭</mark> ∀・腹材	 ・ ・	腐食		▲	模式図	<mark>港湾・漁港</mark>
次時 地震時 違波時	ĺ	陸側土層 海側土層	Ĭ.	置換え土層	` 控え	版-主働側)	空え版-受働側	<u> </u>	
≫高さ情報取び待 № 層上限の 層下限の 層上限の 日日 日 日 日 日 日 日 日 <t< th=""><th></th><th>常時</th><th></th><th></th><th></th><th>地震時</th><th></th><th>津波時</th><th></th></t<>		常時				地震時		津波時	
1 3.00 1.00 8.026 18.138 2 1.00 -8.10 18.138 43.997 3 -8.10 -11.00 46.833 55.563 4 -11.00 -17.50 55.563 75.131 5 -17.50 -52.60 142.051 175.788 6 -22.60 -24.50 175.788 189.357 7 -24.50 -30.00 8.357 52.525 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <th></th> <th>≫高さ情報取得</th> <th>No</th> <th>層上限の 標高(m)</th> <th>層下限の 標高(m)</th> <th>層上限の土圧 強度(kN/m2)</th> <th>層下限の土圧 強度(kN/m2)</th> <th></th> <th></th>		≫高さ情報取得	No	層上限の 標高(m)	層下限の 標高(m)	層上限の土圧 強度(kN/m2)	層下限の土圧 強度(kN/m2)		
3 -8.10 -11.00 46.833 55.563 4 -11.00 -17.50 55.563 75.131 5 -17.50 -22.60 142.051 175.788 6 -22.60 -24.50 175.788 188.357 7 -24.50 -30.00 8.357 52.525 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -			2	3.00	-8.10	8.026	18.138		
4 -11.00 -17.50 55.568 75.131 5 -17.50 -22.60 142.051 175.788 6 -22.60 -24.50 175.788 188.357 7 -24.50 -30.00 8.357 52.525			3	-8.10	-11.00	46.833	55.563		
5 -17.50 -22.60 142.051 175.788 6 -22.60 -24.50 175.788 189.357 7 -24.50 -80.00 8.357 52.525			4	-11.00	-17.50	55.563	75.131		
			5	-17.50	-22.60	142.051	175.788		111
			6	-22.60	-24.50	175.788	188.357		
				-24.50	-30.00	8.357	52.525		

控え工の形式が「控え版」の場合、控え版の安定検討を行うための受働側の土圧強度 を各土層の上限値・下限値で入力します。 高さ情報取得ボタンを押せば、「**土層」--「陸側」**もしくは、置き換え土層を考慮して

同で「「報取得バメンを伴って、「**工宿」」**「産**頃」**もしては、 置き換え工宿を考慮して いる場合には、「**土宿」**「**置換え土層」**から、基準となる高さデータを取得します。

※ 土層は、置換え土を考慮しない場合は「土層」-「陸側」を基準とし、置換え土を考慮する場合は、「土層」-「置換え土層」のデータを基準とします。基準のデータと比較して不足する土層については、内部で分割し、その土層を挟む土圧強度で直線補間をかけ土圧強度を算出します。従って、土圧が変化する位置(たとえば、水位レベル)は、必ず土層を挿入し、土圧強度を入力してください。

その他の外力条件(水平力、作用位置など)を指定します。常時・地震時・津波時それぞ れに最大3つまで入力可能です。

外力の設定画面は、1タブ(<u>その他外力</u>)の構成となります。

第1タブ (その他外力)

10 控え矢板式係船岸6	Ver.1.0.0 - サンプルデータ港湾事例集	H11	
ファイル(F) オブ・ション(O)	データ入力(I) 計算(C) ヘルブ(H)		
· · · · · · · · · · · · · · · · · · ·	1000000000000000000000000000000000000	土層 任意土圧 他外力 模式図	· 港湾・漁港
その他外力			
No	, 外力名称	水平力 (kN/m) (m)	
- 地震時			
No	外力名称	水平力 (kN/m) 作用高さ (m)	※本システムでは、その他外力が作用 する場合と作用しない場合の計算を 同時に行うことはできません本項目
			を設定した場合、常に作用するものと して計算を行います。
_ 津波引き波時			
7#7701077204			
No) 外力名称	(kN/m) (m)	

[外力名称]

外力の名称を入力します。

[水平力]

外力の水平力を入力します。水平力は下図のように主働外力が正の値で受働外力を 負の値で設定します。

[作用高さ]

外力が作用する位置を標高で入力します。

<u>4-10. 模式図</u>

各種条件をもとに模式図を表示します。 潮位、土層などの入力ミスが無いかチェックしてください。 模式図の表示画面は、1タブ(<u>模式図</u>)の構成となります。

第1タブ(模式図)

1000 1000	聞 控え矢板式係船岸6 Ver.1.0.0 - サンプルデータ港湾事例集H11 72/4/(E) オプ ション(Q) データスカ(I) 計算(C) ヘルプ(H)	
▲	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	港湾·渔港

[検討種別]

表示する検討模式図を常時時・地震時・津波時と切り替えます。

[拡大、縮小]

検討模式図の表示スケールを変更します。表示エリアをマウスで指定します。

[全表示]

模式図の表示スケールを初期状態に戻します。

※ 模式図表示エリアの縁にあるボタンをクリックすることにより、表示エリアがスク ロールします。

5. 計算実行、帳票作成

<u>5-1.実行</u>

入力した条件データに従いトライアル計算処理を行い、報告書を作成します。

計算過程で選択を促すダイアログが表示されることがあります。ダイアログの項目の中から適切 なものを選択してください。

又、不正なデータがある場合は、エラーメッセージを表示し計算を中止します。データを修正し、 再度計算を実行して下さい。

尚、計算条件が控え版の場合、安定計算終了時に、引き続き控え版の断面の検討を行うかどう かを選択するダイアログが表示されます。

5-2. 控え版断面計算

計算条件が「控え版」の場合、控え版の断面検討を行うことが可能です。ただし、控え版 の断面検討を行う場合、最低一度は安定検討を行っている必要があります。一度安定検討 を行っていれば、控え版の断面検討に関する各種条件を変更し、控え版の断面検討を繰り 返し行うことが可能です。

5-3. 警告メッセージー覧

計算を続行するか否かの判断が必要な場合に表示されるメッセージです。内容をよく確認してください。

	waring 🛛
	砂質土主働崩壊角計算式の石内が負の値になりました。
内容	砂質土主働崩壊角計算式の√内が負の値になりました
原因	砂質土主働崩壊角算定式のルート内の値が負の値となり、計算がそのる ま続行できない場合に表示されます。内部摩擦角が小さい場合か、ある いは地震合成角が大きいケースで発生するケースが多いようです。
対処法	漁港・漁場の施設の設計参考図書 2015年(資_70)に砂質土土圧式の 応限界についてふれられていますのでご確認ください。そこには、地想 改良を行うなどの対策が必要とされています。「はい」を押下した場合 には、便宜上主働崩壊角を0.0として計算を続行することが可能です。

漁港・漁場の施設の設計参考図書 2015年(資_70)に砂質土土圧式の適応限界についてふれられていますのでご確認ください。そこには、地盤改良を行うなどの対策が必要とされています。「はい」を押下した場合には、便宜上受働崩壊角を0.0として計算を続行することが可能です。

内容	主働土圧係数計算式の√内が負の値になりました
	砂質土主働土圧係数式のルート内の値が負の値となり、計算がそのまま
原因	続行できない場合に表示されます。内部摩擦角が小さい場合か、あるい
	は地震合成角が大きいケースで発生するケースが多いようです。
	漁港・漁場の施設の設計参考図書 2015年(資_70)に砂質土土圧式の適
対加注	応限界についてふれられていますのでご確認ください。そこには、地盤
거 7년7五	改良を行うなどの対策が必要とされています。「はい」を押下した場合
	には、便宜上ルート部分を0.0として計算を続行することが可能です。

内容	受働土圧係数計算式の√内が負の値になりました
	砂質土受働土圧係数式のルート内の値が負の値となり、計算がそのまま
原因	続行できない場合に表示されます。内部摩擦角が小さい場合か、あるい
	は地震合成角が大きいケースで発生するケースが多いようです。
	漁港・漁場の施設の設計参考図書 2015年 (資_70) に砂質土土圧式の適
さい	応限界についてふれられていますのでご確認ください。そこには、地盤
刈処法	改良を行うなどの対策が必要とされています。「はい」を押下した場合
	には、便宜上ルート部分を0.0として計算を続行することが可能です。

(地震時)粘性土崩壊角計算
1	【土層 -17.500m】 基準の方法による計算式の石内が負の値になりました。 港湾基準では地盤改良を行うなどの対策が必要とされています。 指定の崩壊角計算方法で処理を続行しますか?
	(ぱい☆) いいえ(№)

内容	基準の方法による計算式の√内が負の値になりました
	地震時粘性土崩壊角式で、ルート内の値が負の値となり、計算がそのま
原因	ま続行できない場合に表示されます。粘着力の値が小さい場合に発生す
	ることが多いようです。
	港湾基準では、地盤改良を行うなどの対策が必要とされています。「は
対処法	い」を押下した場合には、現在設定されている方法で便宜上、計算を続
	行することが可能です。

	war in	e 🛛 🕅	
	1	粘性土崩壊角既定値(常時)に0.0が設定されています。 このまま継続した場合、粘性土崩壊面の計算でエラーが発生する可能性があります。 このまま続行しますか?	
		(北いえ(N)) (いいえ(N))	
内	容	粘性土崩壊角既定値(常時)に0.0が設定されています	
原	因	永続状態の粘性土崩壊角を算出する式は、明確には記されていま そのため、本システムでは永続状態の粘性土崩壊角の値は入力値 るようになっています。「設計条件」-「粘性土」-「崩壊角既定 0.0が設定されていることが原因です。	せん。 を用い 2値」に
対処法		設定した土質定数に粘性土が存在している場合には、必ず設定す があります。「設計条件」-「粘性土」-「崩壊角既定値」に適当 設定してください。問題なければ「はい」を押下してください。計 行することが可能です。	る必要 な値を 算を続

	war in	e 🛛 🔛	
		粘性土崩壊角既定値(地震時)に0.0が設定されています.	
	<u> </u>	このまま維続した場合、粘性土崩壊面の計算でエラーが発生する可能性があります。	
		このまま続行しますか?	
		(北い文化)	
内	容	粘性土崩壊角既定値(地震時)に0.0が設定されています	-
原	因	変動状態の粘性土崩壊角算定式のルート内の値が負の値となった 用いる「設計条件」-「粘性土」-「崩壊角既定値」に0.0が設定 いることが原因です。	場合に されて
対	処法	 以下の条件の場合には、設定が必要です。 ・設定した土質定数に粘性土が存在している場合。 ・変動状態の粘性土崩壊角算定式のルート内が負の値となった構成定値を用いて土圧強度を算出するよう設定している場合。 「設計条件」-「粘性土」-「崩壊角既定値」に適当な値を設定しさい。問題なければ「はい」を押下してください。便宜上、計算をることが可能です。ただし、港湾基準では、ルート内の値が負のった場合には、地盤改良を行うなどの対策が必要とされています 	場合に、 てくだ 行 て 行 す 。

war i	ng 🛛 🔛
4	[SP-IVW] 断面係数(計算) Z= 1130cm3/m < 断面係数(最小) Z=約 1700cm3/m 腐食後のZが断面性能表の範囲外の可能性があります。 計算を続行しますか?
	<u>(ぱい ()</u> いいえ ())
内容	腐食後のZが断面性能表の範囲外の可能性があります
	内部に保持している腐食時の断面性能算定図表から腐食後の断面
原因	算出しましたが、断面性能低減率がグラフが指し示している最小
	小さくなっている可能性があります。
动复注	確認が必要です。適切な腐食しろを設定するかあるいは、指定し
ᄭᇨᅎ	鋼矢板を変更する必要があるかもしれません。

内容	上記のシミラリティナンバー(ω)が範囲外の可能性があります
原因	ロウの方法により根入れ部の検討を行う場合、シミラリティナンバーが
	必要ですが、本システムでは計算式により算出しているため、基準書に
	あるグラフの領域を超えて、シミラリティナンバーが算出されている可
	能性があることを示すメッセージです。
対処法	「はい」ボタンを押下すれば、処理を続行しますので計算終了後、帳票
	により可・不可の判断を行ってください。前面矢板の突出部分の長さや、
	前面矢板タブで指定している矢板の断面合成及び、ロウの方法による地
	盤反力係数などが影響を及ぼしている可能性がありますので、確認して
	ください。

原因	がOKとなった時点でトライアルを終了します。本メッセージは、最も大
	さな断面の腹おこし材で応力計算を行っても応力が計谷内におさまらな
	かったことを伝えるメッセージです。
	「はい」ボタンを押下すれば、OUTの状態で便宜上処理を続行します。計
対処法	算終了後、帳票で確認してください。作用荷重などの見直しが必要かも
	知れません。

内容	計算したタイロッド径が指定したタイロッド径を超えました
原因	本システムでは、タイロッドを内部に保持しています。自動計算を行った場合には、小さい断面から計算して最初に応力度がOKとなった時点で トライアルを終了します。本メッセージは、最も大きな断面のタイロッ ドで応力計算を行っても応力が許容内におさまらなかったことを伝える メッセージです。タイロッド以外のタイ材でも同様のメッセージが表示 されます。
対処法	「はい」ボタンを押下すれば、OUTの状態で便宜上処理を続行します。計 算終了後、帳票で確認してください。作用荷重などの見直しが必要かも 知れません。

waring	
1	指定した logTs が基準曲線表内に収まっていません. 突出長が短すぎる可能性があります。 突出長を0.0として計算を続行しますか? 突出長=0.010m
	<u>(()()()()()()()()()()()()()()()()()()(</u>

内容	指定したlogTsが基準曲線表内に収まっていません
原因	控え工計算方法が港研方式の場合で、あまりに短い突出長を指定した場合、港研方式の基準曲線法の範囲を超えてしまい計算が続行不可能となった場合に表示されるメッセージです。
対処法	はいボタンを押下すれば、突出長を0.0として計算を続行します。中断す る場合は、「いいえ」ボタンを押下し、突出長を再設定してください。

<u>5-5.エラーメッセージー覧</u>

計算を続行することが不可能な場合に表示されるメッセージです。内容をよく確認し、デ ータを修正してください。

内容	陸側の土層の標高が逆転しています
原因	陸側土層標高の入力順が逆転している箇所があります。
対処法	「土層」-「陸側」-「層上限の標高」を確認します。

内容	海側の土層の標高が逆転しています
原因	海側土層標高の入力順が逆転している箇所があります。
対処法	「土層」-「海側」-「層上限の標高」を確認します。

	error 🛛	
	(ERROR)-陸側土層の開始位置が上部工天端位置より上になっています。	
	<u>(ОК</u>]	
内容	陸側土層の開始位置が上部工天端位置より上になっています	
原因	陸側土層の第1層目の標高が上部工天端位置よりも高い位置に ている場合に表示されます。	こ設定され
対処法	「土層」ー「陸側」ー「層上限の標高」の第1層目を修正するた は「基本条件」ー「高さ条件2」ー「上部エ天端高」を修正しる	か、もしく ます。陸側

| 土層の第1層目は、必ず上部工天端位置以下である必要があります。

土層の第1層目は、必ず設計海底面位置以上である必要があります。

内容	粘着力Cが一値になりました
原因	計算した粘着力が0.0以下となった場合に表示されるメッセージです。地 震時粘性土土圧強度を補間をかけて算出する場合で、DL位置の粘着力を 計算する必要があるケースで表示されることが多いです。
対処法	各土層の粘着力基準位置での粘着力(CO)の見直しや、粘着勾配(Z)の 見直し、あるいは「変動状態」-「変動状態2」-「海底面以下にある粘 土層の土圧採用値」のフラグの変更などで対応します。

内容	地震時粘性土の朋環角か0.0のため土圧か計算でさません
	地震時粘性土崩壊角式で、ルート内の値が負の値となり、計算続行の条
原因	件として「崩壊角既定値を使用して計算」となっているが、崩壊角既定
	値に0.0が設定されている場合に表示されるエラーです。
対処法	「基本条件」-「設計条件」-「崩壊角既定値」に適切な値を設定するか
	もしくは、「変動状態」-「変動状態2」-「粘性土の取り扱い」で上記
	式で√内が負の場合し使用する条件の見直しを行ってください。ただし、
	港湾基準では、ルート内の値が負の値となった場合には、地盤改良を行
	うなどの対策が必要とされています。

error

×

全土層が1受働(土圧)強度<主働(土圧+水圧)強度1となり、仮想海底面が検出できませんでした.

×

<u>OK</u>

山南	全土層が[受働(土圧)強度<主働(土圧+水圧)強度]となり、仮想海底面が
内谷	検出できませんでした
原因	仮想海底面を計算するようになっていますが、全土層の範囲で一度も受
	働側の強度が主働側よりも大きくならなかったことが原因です。
対処法	主働側土質定数もしくは受働側土質定数の見直すか、「前面矢板」ー「前
	面矢板」-「モーメントを計算する範囲」で設計海底面を選択し、仮想海
	底面を計算しない設定とします。

内容	フリーアースサポート法つりあい深さが検索出来ませんでした
原因	フリーアースサポート法根入れ長の算出で、タイ材取り付け点周りの曲
	げモーメントのつりあい深さが検出できませんでした。原因としては、
	以下のものが考えられます。
	・ 最終土層が浅すぎる場合。
	 ・ 受働側強度が主働側に比較して常に小さい場合。
	・ タイ材位置が全体に比較して深い位置にあるなど。
対処法	考えられる原因を検討して、土質定数あるいは、設置位置を変更します。

内容	せん断力0点が検索できませんでした
	フリーアースサポート法最大曲げモーメントの算出で、最大曲げモーメ
	ント発生位置が検出できない場合のエラーメッセージです。原因として
原因	は、以下のものが考えられます。
	・ 突出部分が短すぎる。
	 ・ 主働土圧強度が受働土圧強度に比較して小さい場合など。
対処法	考えられる原因を検討して、土質定数あるいは、設置位置を変更します。

置を設定します。

内容	全土層を超えても指定した仮想海底面位置が検索できませんでした
原因	フリーアースサポート法の計算で仮想海底面位置を任意で入力している が、その位置が土層の最も深い位置よりもさらに深い位置になっていま す。
対処法	「前面矢板」ー「前面矢板」ー「仮想海底面位置」に適切な仮想海底面位 置を設定します。

対処法	「腐食」ー「腐食速度」あるいは「耐用年数」の値を見直すか、	もしく
	は、「矢板の低減率」の確認・修正を行ってください。	

内容	全てのケースで指定距離を満足する突出長は検索できません
1.1.1	
БШ	指定された前面矢板~控えエまでの距離を満足するように自動計算を行
原囚	いましたが、すべての条件を満足する結果は算出できませんでした。
対処法	「タイ・腹材」-「タイ材」-「前面矢板-控えエ間の距離」の見直し
	や、「控えエ」ー「条件1」ー「断面の決定方法」で変位量のチェックを
	行わないことや許容値の見直しあるいは、土質定数や矢板の断面性能な
	ども影響されます。

内容	指定した突出長が1m1/3を超えました
原因	控え矢板・直杭で「仮想突出長を考える場合の1m1/3基準位置」が「タイ 材取付位置」の場合、突出用の変動範囲は、1m1/3の長さとなりますが、 その範囲を超えたことが原因です。
対処法	「控え工」-「条件1」-「杭の仮想突出長」を指定している場合には、 短くしてください。「タイ・腹材」-「タイ材」-「前面矢板-控え工間 の距離」を設定している場合には、距離を長くする必要があるかも知れ ません。

内容	杭の傾斜角が0から30度の範囲にありません
原因	控え組杭で、杭の傾斜角が±30度の中に入っていない場合に表示される エラーです。
対処法	「控え工」-「杭条件」で組杭の傾斜角の設定を±30度以内に変更しま す。

内容	陸側土層で砂層のN値が0.0になっています
原因	控え組杭で陸側土層の砂層のN値の項目が0.0になっていることが原因で す。
対処法	「土層」-「陸側」のN値項目に適当な値を設定してください。

error	
8	(ERROR)-置換え土層で砂層のN値が0.0になっています。
	COK

内容	置換え土層で砂層のN値が0.0になっています
原因	控え組杭で置き換え土層がある場合、控え組杭の検討に使用する土層 諸元は、置き換え土層タブの値を用います。そこのN値の項目が0.0にな っていることが原因です。
対処法	「十層」ー「置き換え十層」のN値項目に適当な値を設定してください。
対処法	「土層」-「置き換え土層」のN値項目に適当な値を設定してください。

error		
8	(ERROR)-押込み杭の支持層がセットされていない場合、負の周面摩擦は検討できません。	
	[OK]	
	押込み杭の支持層がセットされていない場合、負の周面摩擦は検討⁻	でき
内容		
БП	負の周面摩擦を検討する設定になっているにもかかわらず、支持層 	が設
原囚	定されていないことが原因です。	
	控え組杭で置き換え土層がある場合、控え組杭の検討に使用する土層	喜
さい	│諸元は、置き換え土層タブの値を用います。置き換え土層がない場↑	合に
刈処広	│は、陸側土層タブの土層諸元を用いますので、該当するほうの「負∈	の周
	面摩擦[押」込み杭]」項目で支持層フラグをON/OFFしてください。	

内容	杭の先端が支持層内に存在しません
原因	控え組杭の検討で、組杭の先端が支持層まで届いていないことが原因で
	す。
対処法	「控え工」-「杭条件」-「下端高」で設定した控え組杭の長さが短く、
	支持層まで届いていないか、あるいは長すぎて「土層」「負の周面摩擦
	[押し込み杭]」項目で支持層フラグをセットした土層を突き抜けている
	かのどちらかの設定になっていると考えられますので杭の長さかあるい
	は、支持層位置の再設定を行ってください。

「前面矢板-控えエ間の距離」の再設定が必要です。

対処法

	error	r 💌	
	(😧 (ERROR)-控え工崩壊面立ち上げ位置(lm1/3.0)が計算できません.	
		ОК	
内容	내 전	矢板間距離算出の際に使用する1m1/3.0位置が計算できません。	
原团	E	控え矢板・直杭もしくは、控え組杭の場合で横方向地盤反力係数が(なっていることが原因です。).0と
対久	卫法	控え矢板・直杭の場合は、「控え工」-「条件2」-「地盤反力係数 を確認します。控え組杭の場合は、「控え工」-「条件」-「地盤反 数(kh)」を確認します。	(kh)」 〕 〕 力係
6. 帳票印刷

弊社帳票印刷プログラム「AEC帳票印刷・編集ツール for Windows」(通称: ViewAEC2007)」 をプログラム内部から起動し、各種計算により作成された計算結果の印刷・確認を行います。 印刷イメージを画面に表示し、印刷前に計算結果やレイアウトの確認などが行えます。詳しく は、ViewAEC2007の操作説明書を参照してください。

6-1. 基本画面の説明

AEC帳票印刷・編集ツールは以下のように構成されています。

(1) 階層構造表示部

エクスプローラのように、帳票の章が表示されています。マウスで選択することで自 由にジャンプできます。

- (2) 帳票イメージ表示部 帳票の印刷イメージが常に表示されています。帳票の編集もここで行います。
- (3) メニュー部 各種の設定・操作を行います。
- (4) スピードボタン部 よく使う設定・操作の一部が割り当てられたボタンです。

<u>6-2. Word/Excel文書にコンバート</u>

現在開いている帳票をMicrosoft Office Word 2007文書(*.docx)形式、Excelシート (*.xlsx)形式に変換するコンバーターを起動します。本機能はMicrosoft Officeをイン ストールしていないPCでも動作致します。

注意:変換する帳票は未編集の帳票データをご使用ください。編集済み(ブロック結合や 文字列追加等)の帳票データの場合、レイアウトが乱れる場合があります。

🦀 ViewAEC2007 -					
	ファイル(E) 編集(E) 追加(A)	効果(<u>C</u>)	表		
	新規作成(<u>N</u>) 開く(<u>O</u>) 印刷ファイルを追加する 閉じる(<u>C</u>) 上書き保存(<u>S</u>) 名前を付けて保存(<u>A</u>) Word・Excel文書(<u>Cコンパート</u> 部品ファイル 部品ファイル	Ctrl+N Ctrl+O Ctrl+S	AU Teesee	 ごンバートオブション □ンバート種別 © Microsoft Office Word 2007 © Microsoft Office Excel 2007 変換ページ 変換ページ 空 全てのページを変換 ① 指定のページを変換 ① 1 ~ 8 セル幅の設定 ○ 半角1 文字 ○ 実線 ○ 実線 ○ 実線 	
I			-	文書ファイル D¥文書.docx 参照 コンバート開始 キャンセル	

【コンバート種別】 変換する文書形式を選択します。

- 【変換ページ】 変換するページを指定する場合は開始ページと終了ページを指定し ます。
- 【セル幅の設定】 Excel形式に変換する場合の基準セル幅を指定します。
- 【文書ファイル】 変換後に保存する文書ファイル名を指定します。Excel変換の場合は 1シートの最大ページ数を指定します。初期値は50ページに設定され ています。
- コンバート開始ボタンで指定したOffice文書形式に変換します。処理の経過を示すダイ アログの他に『コピーしています...』などのダイアログを表示す る事があります。
- ※ 変換した文書ファイルはOffice2007形式です(拡張子docx/xlsx)、Office2007以前の Officeに対応するにはマイクロソフトが提供する『Word/Excel/PowerPoint 2007 ファ イル形式用 Microsoft Office 互換機能パック』が必要になります。
- ※ Ver3.2.7よりWord変換は9,10,10.5,11,12ポイントの文字サイズに対応しました。ただし、見出し文字サイズと通常文字サイズを同じ値にして下さい。非対応の文字サイズで変換した場合はレイアウトが乱れます。その場合、Word側で文字列全選択をし、文字サイズと段落サイズを変更する事でレイアウトを整えることができます。
- ※ Excel変換は9,10,11,12ポイントの文字サイズに対応しています。